Phân tích đa thức thành nhân tử
49b^2-a^2+6a-9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a^{3}+3a^{2}-6a-8`
`=a^{3}-8+3a(a-2)`
`=(a-2)(a^{2}+2a+4)+3a(a-2)`
`=(a-2)(a^{2}+2a+4+3a)`
`=(a-2)(a^{2}+5a+4)`
`=(a-2)(a+1)(a+4)`
\(a^3-8+3a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+2a+4\right)+3a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+2a+4\right)+3a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+2a+4+3a\right)\)
\(=\left(a-2\right)\left(a^2+5a+4\right)\)
\(\left(a-2\right)\left(a+1\right)\left(a+4\right)\)
a) -ĐKXĐ của A:
x+3≠0 ⇔x≠-3.
x2-9≠0 ⇔(x-3)(x+3)≠0 ⇔x-3≠0 hay x+3≠0⇔x≠3 hay x≠-3.
x-3≠0 ⇔x≠3.
b) B=x2+5x+6=x2+2x+3x+6=x(x+2)+3(x+2)=(x+2)(x+3)
c) A=\(\dfrac{x}{x+3}-\dfrac{6x}{x^2-9}+\dfrac{2}{x-3}\)=\(\dfrac{x\left(x-3\right)+2\left(x+3\right)-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-3x+2x+6-6x}{\left(x+3\right)\left(x-3\right)}\)=\(\dfrac{x^2-7x+6}{x^2-9}\)
d)- Vì x=37 thỏa mãn ĐKXĐ của A và A=\(\dfrac{x^2-7x+6}{x^2-9}\)nên:
A=\(\dfrac{37^2-7.37+6}{37^2-9}=\dfrac{279}{340}\)
a)\(a^2+6a+8-b^2-2b=\left(a+3\right)^2-\left(b+1\right)^2=\left(a+3+b+1\right)\left(a+3-b-1\right)\)
\(=\left(a+b+4\right)\left(a-b+2\right)\)
b)\(a^2+6ax+8x^2-b^2-2bx\)
\(=\left(a+3x\right)^2-\left(b+x\right)^2\)
\(=\left(a+3x-b-x\right)\left(a+3x+b+x\right)=\left(a-b+2x\right)\left(a+b+4x\right)\)
đây là hằng đẳng thức
\(a^3+6a^2+12a+8=a^3+3.2.a^2+3.2^2.a+2^3=\left(a+2\right)^3\)
\(25\left(x-3\right)^2-\left(2x-7\right)^2\)(*)
Đặt \(x-3=t\)và \(2x-7=z\)thay vào (*) ta được:
\(25t^2-z^2\)
\(=\left(5t-z\right)\left(5t+z\right)\)thay t=x-3 và y=2x-7 ta được:
\(=\left(5x-15-2x+7\right)\left(5x-15+2x-7\right)\)
\(=\left(3x-8\right)\left(7x-22\right)\)
C2 nhân ra rồi phân tích
\(25\left(x-3\right)^2-\left(2x-7\right)^2\)
\(=5^2.\left(x-3\right)^2-\left(2x-7\right)^2\)
\(=\left[5.\left(x-3\right)\right]^2-\left(2x-7\right)^2\)
\(=\left[5\left(x-3\right)-\left(2x-7\right)\right]\left[5\left(x-3\right)+\left(2x-7\right)\right]\)
\(=\left(5x-15-2x+7\right)\left(5x-15+2x-7\right)\)
\(=\left(3x-8\right)\left(7x-22\right)\)
`49b^{2}-a^{2}+6a-9`
`=(7b)^{2}-(a-3)^{2}`
`=(7b-a+3)(7b+a-3)`
\(49b^2-a^2+6a-9\)
\(=49b^2-\left(a-3\right)^2\)
\(=\left(7b-a+3\right)\left(7b+a-3\right)\)