tính tổng D=4/5+4/52-4/53+...+4/5200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
1-2+3-4+5-6+...+51-52+53
=(1-2)+(3-4)+...+(51-52)+53
=(-1)+(-1)+...+(-1)+53
=(-1)×26+53
=-26+53
=27
1-2+3-4+5-6+...+51-52+53
=(1-2)+(3-4)+...+(51-52)+53
=(-1)+(-1)+...+(-1)+53
=(-1)×26+53
=-26+53
=27
a: \(12+2^2+3^2+4^2+5^2\)
\(=12+4+9+16+25\)
\(=16+50=66\)
\(\left(1+2+3+4+5\right)^2=15^2=225\)
=>\(12+2^2+3^2+4^2+5^2< \left(1+2+3+4+5\right)^2\)
b: \(1^3+2^3+3^3+4^3=\left(1+2+3+4\right)^2< \left(1+2+3+4\right)^3\)
c: \(5^{202}=5^2\cdot5^{200}=25\cdot5^{200}>16\cdot5^{200}\)
d: \(18\cdot4^{500}=18\cdot2^{1000}\)
\(2^{1004}=2^4\cdot2^{1000}=16\cdot2^{1000}\)
=>\(18\cdot4^{500}>2^{1004}\)
e: \(2022\cdot2023^{2024}+2023^{2024}=2023^{2024}\left(2022+1\right)\)
\(=2023^{2025}\)
=(1-2)+(3-4)+...+(53-54)
=-1+(-1)+(-1)+...+(-1)
(dãy có (54-1):1+1=54 số hạng
=> dãy có 27 cặp)
=27.(-1)=-27
#Học-tốt
1-2+3-4+5-6+........+51-52+53-54 (54 Số Hạng)
= (1-2)+(3-4)+(5-6)+.......+(51-52)+(53-54) ( 54 : 2 = 27 Nhóm)
= (-1)+(-1)+(-1)+........+(-1)+(-1) (27 Số Hạng)
= (-1) x 27
= (-27)
Bài Này Dễ Mà
D = \(\frac{4}{5}+\frac{4}{5^2}-\frac{4}{5^3}+...+\frac{4}{5^{200}}\)
D = \(4.\left(\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{200}}\right)\)
Đặt C = \(\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^3}+...+\frac{1}{5^{200}}\)
5C = \(1+\frac{1}{5}-\frac{1}{5^2}+...+\frac{1}{5^{199}}\)
6C = 5C + C = \(1+\frac{1}{5}+\frac{1}{5}+\frac{1}{5^{200}}\)
=> C = \(\frac{\frac{7}{5}+\frac{1}{5^{200}}}{6}\)
=> D = \(4.\left(\frac{\frac{7}{5}+\frac{1}{5^{200}}}{6}\right)\)
=> D = \(\frac{\frac{14}{5}+\frac{2}{5^{200}}}{3}\)