GIÚP VỚI Ạ: Tính
a, 1*3+ 2*4+ 3*5+ 4*6+...+ 99*101+ 100*102
b, 1*100+ 2*99+ 3*98+...+ 99*2+ 100*1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
B=1+2-(3+4)+5+6-..-100+101
B=(3+11+19+...+195)-(7+15+...+199)+101
B=25.99-25.103+101
B=-100+101=1
Vậy B=1
101 + 100 + ... + 2 + 1 = 101x102/2 = 101x51 = 5151
101 - 100 + 99 - .. + 1 = ( 101 -100 ) + ( 99 - 98 ) + ... + ( 3 - 2 ) + 1 = 1 + 1 + 1 + ... + 1 ( 51 số ) = 51
suy ra C = 5151/51 = 101
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
3737x43 - 4343x36 = 37x101x43 - 43x101x36 = 43x101 = 4343
2 + 4 + 6 +... + 100 = 2x( 1 + 2 + ... + 50 ) = 2x50x51/2 = 50x51 = 2550
vậy D = 4343/2550
a) Ta có : $1.3+2.4+3.5+...+99.101+100.102$
$=(2-1)(2+1)+(3-1)(3+1)+(4-1)(4+1)+...+(100-1)(100+1)+(101-1)(101+1)$
$=2^2-1+3^2-1+4^2-1+...+100^2-1+101^2-1$
$=(2^2+3^2+4^2+...+100^2+101^2)-100$
b) $1.100+2.99+3.98+...+99.2+100.1$
$=1.100+2.(100-1)+3.(100-2)+...+99.(100-98)+100.(100-99)$
$=100(1+2+3+...+99+100)-(1.2+2.3+...+99.100)$
$=100.\dfrac{101.100}{2}-\dfrac{99.100.101}{3}=171700$