phan tich da thuc thanh nhan tu : \(a^6+a^4+a^2b^2+b^4-b^6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^2+x-6\)
\(=x^2-2x+3x-6\)
\(=\left(x^2-2x\right)+\left(3x-6\right)\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
a) x2 + x - 6
= x2 - 2x + 3x - 6
= (x2 - 2x) + (3x - 6)
= x(x - 2) + 3(x - 2)
= (x + 3)(x - 2)
b) x4 + 4
= x4 + 4x2 + 4 - 4x2
= (x4 + 4x2 + 4) - 4x2
= (x + 2)2 - 4x2
= (x + 2 - 2x)(x + 2 +2x)
\(\left(a^2+b^2-c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2\right)^2-\left(2ab\right)^2\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[\left(a-b\right)^2+c^2\right]\)
=(a+b+c)(a+b-c)(a-b+c)(a-b-c)
a/ \(4x^2-49=\left(2x\right)^2-7^2=\left(2x-7\right)\left(2x+7\right)\)
b/ \(a^2-2a-b^2-2b=\left(a^2-2a+1\right)-\left(b^2+2b+1\right)=\left(a-1\right)^2-\left(b+1\right)^2\)
\(=\left(a-1-b-1\right)\left(a-1+b+1\right)=\left(a-b-2\right)\left(a+b\right)\)
\(x^3+x+2=\left(x^3+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+1\right)\)
\(=\left(x+1\right)\left(x^2-x+2\right)\)
\(b,x^4+5x^3+10x-4=\left(x^4-4\right)+\left(5x^3-10x\right)\)\(=\left(x^2+2\right)\left(x^2-2\right)+5x\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(x^2-2+5x\right)\)
\(a^6+a^4+a^2b^2+b^4-b^6\)
\(=(a^2)^3-(b^2)^3+(a^4+a^2b^2+b^4)\)
\(=(a^2-b^2)(a^4+a^2b^2+b^4)+(a^4+a^2b^2+b^4)\)
\(=(a^2-b^2+1)(a^4+a^2b^2+b^4)\)
\(=(a^4+2a^2b^2+b^4-a^2b^2)(a^2-b^2+1)\)
\(=(a^2+ab+b^2)(a^2-ab+b^2)(a^2-b^2+1)\)
\(a^6+a^2b^2+a^4+b^2-b^6\)
\(=a^4\left(a^2+b^2\right)+a^2\left(a^2+b^2\right)-b^6\)
\(=\left(a^2+b^2\right)+\left(a^4+a^2\right)-b^6\)