K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

Để A lớn nhất thì \(x^2+3x+1\) nhỏ nhất

Ta có: \(x^2+3x+1=x^2+\dfrac{3}{2}x.2+\dfrac{9}{4}-\dfrac{5}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\)

Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\)

\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)

\(\Rightarrow A=\dfrac{3}{\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}}\le3:\dfrac{-5}{4}=\dfrac{-12}{5}\)

Dấu " = " khi \(\left(x+\dfrac{3}{2}\right)^2=0\Rightarrow x=\dfrac{-3}{2}\)

Vậy \(MAX_A=\dfrac{-12}{5}\) khi \(x=\dfrac{-3}{2}\)

19 tháng 6 2017

Ta có:

\(A=\dfrac{3}{x^2+3x+1}=\dfrac{3}{x^2+1,5x+1,5x+2,25-1,25}\)

\(=\dfrac{3}{\left(x^2+1,5x\right)+\left(1,5x+2,25\right)-1,25}\)

\(=\dfrac{3}{x.\left(x+1,5\right)+1,5.\left(x+1,5\right)-1,25}\)

\(=\dfrac{3}{\left(x+1,5\right)^2-1,25}\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x+1,5\right)^2\ge0\Rightarrow\left(x+1,5\right)^2-1,25\ge-1,25\)

\(\Rightarrow\dfrac{3}{\left(x+1,5\right)^2-1,25}\le-2,4\)

Hay \(A\le-2,4\) với mọi giá trị của \(x\in R\).

Để \(A=-2,4\) thì \(\dfrac{3}{\left(x+1,5\right)^2-1,25}=-2,4\)

\(\Rightarrow\left(x+1,5\right)^2-1,25=-1,25\)

\(\Rightarrow\left(x+1,5\right)^2=0\Rightarrow x+1,5=0\)

\(\Rightarrow x=-1,5\)

Vậy GTLN của biểu thức A là -2,4 đạt được khi và chỉ khi \(x=-1,5\)

Chúc bạn học tốt!!!

25 tháng 10 2023

A) \(A=-3x^2+x+1\)

\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)

Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)

Dấu "=" xảy ra khi:

\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)

Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)

B) \(B=2x^2-8x+1\)

\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(B=2\left(x-2\right)^2-7\)

Mà: \(2\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra khi:

\(x-2=0\Rightarrow x=2\)

Vậy: \(B_{min}=2.khi.x=2\)

25 tháng 10 2023

câu a) bạn viết sai đề rồi

 

11 tháng 10 2021

a) \(\dfrac{2x+3}{24}=\dfrac{3x-1}{32}\)

\(\Rightarrow32\left(2x+3\right)=24\left(3x-1\right)\)

\(\Rightarrow64x+96=72x-24\)

\(\Rightarrow8x=120\Rightarrow x=15\)

b) \(\dfrac{13x-2}{2x+5}=\dfrac{76}{17}\)

\(\Rightarrow17\left(13x-2\right)=76\left(2x+5\right)\)

\(\Rightarrow221x-34=152x+380\)

\(\Rightarrow69x=414\Rightarrow x=6\)

\(6-2\left|1+3x\right|\le6\)'

Max \(A=6\Leftrightarrow1+3x=0\)

\(\Rightarrow3x=-1\)

\(\Rightarrow x=\frac{-1}{3}\)

\(\left|x-2\right|+\left|x-5\right|\ge0\)

Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)

15 tháng 8 2016

A= 6-2|1+3x|

Amax khi và chỉ khi 2-/1+3x/min.Vì /1+3x/luôn lớn hơn hoạc bằng 0 mà 2/1-3x/min khi /1-3x/min.

=>để 2/1-3x/min thì /1-3x/=0 khi đó thì 2/1-3x/=0.A= 6-2|1+3x|=6-0=6

Vậy Amax= 6

1:

a: =>28x-8=9x+3

=>19x=11

=>x=11/19

b: =>(3x-1)(x-1)=(2x+1)(x+1)

=>3x^2-4x+1=2x^2+3x+1

=>x^2-7x=0

=>x=0 hoặc x=7

NV
6 tháng 2 2021

\(y'=\dfrac{\left(40x+10\right)\left(3x^2+2x+1\right)-\left(6x+2\right)\left(20x^2+10x+3\right)}{\left(3x^2+2x+1\right)}\)

\(=\dfrac{2\left(5x^2+11x+2\right)}{\left(3x^2+2x+1\right)^2}=\dfrac{2\left(x+2\right)\left(5x+1\right)}{\left(3x^2+2x+1\right)^2}=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{1}{5}\end{matrix}\right.\)

\(y\left(-2\right)=7\) ; \(y\left(-\dfrac{1}{5}\right)=\dfrac{5}{2}\)

\(\Rightarrow y_{max}=7\) khi \(x=-2\)