Tìm GTLN
A= \(\dfrac{3}{x^2+3x+1}\)
Giúp mình nha mọi người
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) \(A=-3x^2+x+1\)
\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)
\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)
\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)
Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)
\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)
Dấu "=" xảy ra khi:
\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)
Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)
B) \(B=2x^2-8x+1\)
\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(B=2\left(x-2\right)^2-7\)
Mà: \(2\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)
Dấu "=" xảy ra khi:
\(x-2=0\Rightarrow x=2\)
Vậy: \(B_{min}=2.khi.x=2\)
a) \(\dfrac{2x+3}{24}=\dfrac{3x-1}{32}\)
\(\Rightarrow32\left(2x+3\right)=24\left(3x-1\right)\)
\(\Rightarrow64x+96=72x-24\)
\(\Rightarrow8x=120\Rightarrow x=15\)
b) \(\dfrac{13x-2}{2x+5}=\dfrac{76}{17}\)
\(\Rightarrow17\left(13x-2\right)=76\left(2x+5\right)\)
\(\Rightarrow221x-34=152x+380\)
\(\Rightarrow69x=414\Rightarrow x=6\)
\(6-2\left|1+3x\right|\le6\)'
Max \(A=6\Leftrightarrow1+3x=0\)
\(\Rightarrow3x=-1\)
\(\Rightarrow x=\frac{-1}{3}\)
\(\left|x-2\right|+\left|x-5\right|\ge0\)
Max \(B=0\Leftrightarrow\hept{\begin{cases}x-2=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
1:
a: =>28x-8=9x+3
=>19x=11
=>x=11/19
b: =>(3x-1)(x-1)=(2x+1)(x+1)
=>3x^2-4x+1=2x^2+3x+1
=>x^2-7x=0
=>x=0 hoặc x=7
\(y'=\dfrac{\left(40x+10\right)\left(3x^2+2x+1\right)-\left(6x+2\right)\left(20x^2+10x+3\right)}{\left(3x^2+2x+1\right)}\)
\(=\dfrac{2\left(5x^2+11x+2\right)}{\left(3x^2+2x+1\right)^2}=\dfrac{2\left(x+2\right)\left(5x+1\right)}{\left(3x^2+2x+1\right)^2}=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{1}{5}\end{matrix}\right.\)
\(y\left(-2\right)=7\) ; \(y\left(-\dfrac{1}{5}\right)=\dfrac{5}{2}\)
\(\Rightarrow y_{max}=7\) khi \(x=-2\)
Để A lớn nhất thì \(x^2+3x+1\) nhỏ nhất
Ta có: \(x^2+3x+1=x^2+\dfrac{3}{2}x.2+\dfrac{9}{4}-\dfrac{5}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\)
Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\)
\(\Rightarrow\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)
\(\Rightarrow A=\dfrac{3}{\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}}\le3:\dfrac{-5}{4}=\dfrac{-12}{5}\)
Dấu " = " khi \(\left(x+\dfrac{3}{2}\right)^2=0\Rightarrow x=\dfrac{-3}{2}\)
Vậy \(MAX_A=\dfrac{-12}{5}\) khi \(x=\dfrac{-3}{2}\)
Ta có:
\(A=\dfrac{3}{x^2+3x+1}=\dfrac{3}{x^2+1,5x+1,5x+2,25-1,25}\)
\(=\dfrac{3}{\left(x^2+1,5x\right)+\left(1,5x+2,25\right)-1,25}\)
\(=\dfrac{3}{x.\left(x+1,5\right)+1,5.\left(x+1,5\right)-1,25}\)
\(=\dfrac{3}{\left(x+1,5\right)^2-1,25}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+1,5\right)^2\ge0\Rightarrow\left(x+1,5\right)^2-1,25\ge-1,25\)
\(\Rightarrow\dfrac{3}{\left(x+1,5\right)^2-1,25}\le-2,4\)
Hay \(A\le-2,4\) với mọi giá trị của \(x\in R\).
Để \(A=-2,4\) thì \(\dfrac{3}{\left(x+1,5\right)^2-1,25}=-2,4\)
\(\Rightarrow\left(x+1,5\right)^2-1,25=-1,25\)
\(\Rightarrow\left(x+1,5\right)^2=0\Rightarrow x+1,5=0\)
\(\Rightarrow x=-1,5\)
Vậy GTLN của biểu thức A là -2,4 đạt được khi và chỉ khi \(x=-1,5\)
Chúc bạn học tốt!!!