Giaỉ PT: \(\sqrt{x-3}-\sqrt{x}=\sqrt{2x+1}-\sqrt{3x+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x+1\right)\sqrt{3x+1}-5\sqrt{2x-1}+\sqrt{2x-1}\cdot\sqrt{3x+1}-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\sqrt{3x+1}-5\right)+\sqrt{2x-1}\cdot\left(\sqrt{3x+1}-5\right)=0\)
\(\Leftrightarrow\left(x+1+\sqrt{2x-1}\right)\left(\sqrt{3x+1}-5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1+\sqrt{2x-1}\right)=0\\\sqrt{3x+1}-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}vônghiệm\\x=8\end{cases}}\)
Đk : \(x\ge\frac{1}{2}\)
Đặt \(\sqrt{2x-1}=a;\sqrt{3x+1}=b\)\(a\ge0;b>0\) thì x+1 = b2-a2-1
PT<=> (b^2-a^2-1)b -5a + ab = 5(b^2-a^2-1)
<=> (b^2-a^2-1)(b-5)+a(b-5)=0
<=> (b^2-a^2-1+a)(b-5)=0
<=>\(\orbr{\begin{cases}b^2-a^2-1+a=0\\b-5=0\end{cases}}\)
* b^2-a^2-1+a= 0 <=>x+2 -1 + \(\sqrt{2x-1}\)=0<=> x+1+\(\sqrt{2x-1}\)=0
Mặt khác : x\(\ge\)1/2 >0 ; \(\sqrt{2x-1}\ge0\) nên x+1+\(\sqrt{2x-1}>0\)=> pt vô no
*b-5 = 0 <=> b=5 <=> x= 8 tm
Vậy pt có no duy nhất là x=8
b.
ĐKXĐ: \(x\ge-1\)
\(\sqrt{\left(x+1\right)\left(x+35\right)}-14\sqrt{x+35}+84-6\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+35}-14\right)-6\left(\sqrt{x+35}-14\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-6\right)\left(\sqrt{x+35}-14\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=6\\\sqrt{x+35}=14\end{matrix}\right.\)
\(\Leftrightarrow...\)
a. ĐKXĐ: \(-1\le x\le1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a+2a^2=-b^2+b+3ab\)
\(\Leftrightarrow\left(2a^2-3ab+b^2\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a+1=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{1-x}\\2\sqrt{x+1}+1=\sqrt{1-x}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\4x+5+4\sqrt{x+1}=1-x\left(1\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow4\sqrt{x+1}=-4-5x\) \(\left(x\le-\dfrac{4}{5}\right)\)
\(\Leftrightarrow16\left(x+1\right)=25x^2+40x+16\)
\(\Leftrightarrow25x^2+24x=0\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\dfrac{24}{25}\end{matrix}\right.\)
c: Ta có: \(\sqrt{2x}=\sqrt{5}\)
\(\Leftrightarrow2x=5\)
hay \(x=\dfrac{5}{2}\)
d: Ta có: \(\sqrt{3x-1}=4\)
\(\Leftrightarrow3x-1=16\)
\(\Leftrightarrow3x=17\)
hay \(x=\dfrac{17}{3}\)
Ta có: \(\sqrt{4\cdot\left(1-x\right)^2}=6\)
\(\Leftrightarrow2\left|x-1\right|=6\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=3\\x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
\(\Leftrightarrow x^2+4=2x+3\)
=>x^2-2x+1=0
=>(x-1)^2=0
=>x=1
a, ĐKXĐ: ...
\(\sqrt{3x^2-2x+6}+3-2x=0\)
\(\Leftrightarrow\sqrt{3x^2-2x+6}=2x-3\)
\(\Leftrightarrow3x^2-2x+6=4x^2-12x+9\)
\(\Leftrightarrow4x^2-10x+3=0\)
.....
b, ĐKXĐ: ...
\(\sqrt{x+1}+\sqrt{x-1}=4\\ \Leftrightarrow x+1+x-1+2\sqrt{\left(x+1\right)\left(x-1\right)}=16\\ \Leftrightarrow2\sqrt{x^2-1}=16-2x\\ \Leftrightarrow\sqrt{x^2-1}=8-x\\ \Leftrightarrow x^2-1=64-16x+x^2\\ \Leftrightarrow65-16x=0\\ \Leftrightarrow x=\dfrac{65}{16}\)
a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)
\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)
TH1: \(x\ge-1\)
\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
TH2: \(x< -1\)
\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)
\(\Leftrightarrow...\)
Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi
a, ĐK: \(x\ge2\)
\(\sqrt{2x+1}-\sqrt{x-2}=x+3\)
\(\Leftrightarrow\dfrac{x+3}{\sqrt{2x+1}+\sqrt{x-2}}=x+3\)
\(\Leftrightarrow\left(x+3\right)\left(\dfrac{1}{\sqrt{2x+1}+\sqrt{x-2}}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\sqrt{2x+1}+\sqrt{x-2}=1\left(vn\right)\end{matrix}\right.\)
Phương trình vô nghiệm.
b, ĐK: \(x\ge-1\)
\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)
\(\Leftrightarrow\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{\left(x+3\right)\left(x+1\right)}\)
\(\Leftrightarrow-\sqrt{x+3}\left(\sqrt{x+1}-1\right)+2x\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x\\\sqrt{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+3=4x^2\end{matrix}\right.\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)