Cho \(0\le a,b,c\le2\)và \(a+b+c=3\). Tìm Min, Max: \(P=^2+b^2+c^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O<=a,b,c<=2
0<=a^2 <=4
0<=b^2 <=4
0<=b^2 <=4
công vào
0<=a^2 +b^2 +c^2 +<= 3.4 =12
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,
Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new
Help meeee! thanks nhiều ạ
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
*)Min: Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge9\)\(\Rightarrow P\ge3\)
Đẳng thức xảy ra khi \(a=b=c=1\)
*)Max: Không mất tính tổng quát giả sử \(a\ge b\ge c\)
Đặt \(f\left(x\right)=x^2\) là hàm lồi trên \((0;2)\) và thỏa \(a+b+c=3\) nên \((2;1;0) \succ(a,b,c)\)
Áp dụng BĐT Karamata ta có:
\(a^2+b^2+c^2\le2^2+1^2+0^2=5\)
Đẳng thức xảy ra khi \(a=2;b=1;c=0\)