Tìm a,b,c biết
5abc chia hết cho 413
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu bỏ $a+b+c=0$ thì đề vẫn thiếu em ạ.
Tính $(a+b)^5$ (nhưng không có điều kiện gì thì tính như thế nào?)
$(a+b+c)^5$ không chia hết cho $5abc$ khi $a=b=c=1$
$a+b+c=0$ thì $(a+b+c)^5=0$ hiển nhiên chia hết cho $5abc$ rồi bạn
Ta có :
\(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^5=-c^5\)
\(\Leftrightarrow a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5=-c^5\)
\(\Leftrightarrow a^5+b^5+c^5=-5ab\left(a^3+b^3+2a^2b+2ab^2\right)\)
\(\Leftrightarrow a^5+b^5+c^5=-5ab\left[\left(a^3+b^3\right)+2ab\left(a+b\right)\right]\)
\(\Leftrightarrow a^5+b^5+c^5=-5ab\left(a+b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow a^5+b^5+c^5=-5abc\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow a^5+b^5+c^5\) chia hết cho \(5abc\left(đpcm\right)\)
Ta có:
\(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^5=-c^5\)
\(\Rightarrow a^5+5a^4b+10a^3b+10a^2b^3+5ab^4+b^5=-c^5\)
\(\Rightarrow a^5+b^5+c^5=5ab\left(a^3+b^3+2a^2b+2ab^2\right)\)
\(\Rightarrow a^5+b^5+c^5=5ab\left[\left(a^3+b^3\right)+2ab\left(a+b\right)\right]\)
\(\Rightarrow a^5+b^5+c^5=5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]\)
\(\Rightarrow a^5+b^5+c^5=5ab\left(a+b\right)\left(a^2+ab+b^2\right)\)
\(\Rightarrow a^5+b^5+c^5=-5abc\left(a^2+ab+b^2\right)\)
\(\Rightarrowđpcm\)
Câu hỏi của trần thị bảo trân - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi trên là c/m \(a^3+b^3+c^3=3abc\)
Vậy thì suy ra được \(a^3+b^3+c^3⋮3abc\)
Mấy câu còn lại tương tự
\(\overline{5abc}⋮413\Leftrightarrow\overline{abc}+87⋮413\)
+\(\overline{abc}+87=413\Leftrightarrow\overline{abc}=326\)
+ \(\overline{abc}+87=2.413\Leftrightarrow\overline{abc}=739\)
Vì \(5172⋮413\Rightarrow a=1;b=7;c=2\)