K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

Chứng minh bổ đề: \(\dfrac{4x}{3-4x^2}\ge4x^2\)

\(\Leftrightarrow1+4x^3\ge3x\)

\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{2}+4x^3\ge3x\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{2}+4x^3\ge3\sqrt[3]{\dfrac{4x^3}{4}}=3x\left(đpcm\right)\)

Áp dụng bổ đề cho các phân thức còn lại và thu lại ta có

\(P\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+xz\right)=3\)

Vậy \(P_{min}=3\)

NV
23 tháng 8 2021

Ta chứng minh BĐT sau:

Ta có: \(x\left(3-4x^2\right)=-4x^3+3x-1+1=1-\left(x+1\right)\left(2x-1\right)^2\le1\)

\(\Rightarrow\dfrac{4x^2}{x\left(3-4x^2\right)}\ge\dfrac{4x^2}{1}=4x^2\)

Tương tự và cộng lại:

\(Q\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+zx\right)=3\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{2}\)

14 tháng 7 2018

Bài 1 :

Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)

Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)

5 tháng 11 2019

Chứng minh bổ đề : \(\frac{4x}{3-4x^2}\ge4x^2\)

\(\Leftrightarrow1+4x^3\ge3x\)

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}+4x^3\ge3x\)

Áp dụng bất đẳng thức Cauchy 

\(\Rightarrow\frac{1}{2}+\frac{1}{2}+4x^3\ge3\sqrt[3]{\frac{4x^3}{4}}=3x\left(đpcm\right)\)

Áp dụng bổ đề cho các phân thức còn lại và thu lại ta có :

\(P\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+xz\right)=3\)

Vậy \(P_{min}=3\)

Chúc bạn học tốt !!!

5 tháng 11 2019

Chứng minh bổ đề: \(\frac{4x}{3-4x^2}\ge4x^2\)

\(\Leftrightarrow1+4x^3\ge3x\)

\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}+4x^3\ge3x\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\frac{1}{2}+\frac{1}{2}+4x^3\ge3\sqrt[3]{\frac{4x^3}{4}=3x\left(đpcm\right)}\)

Áp dụng bổ đề cho các phân thức còn lại và thu lại ta có

\(P\ge4\left(x^2+y^2+z^2\right)\ge4\left(xy+yz+xz\right)=3\)

Vậy \(Pmin=3\)

16 tháng 4 2017

Cách giải khác:

Ta chứng minh bổ đề:

\(\dfrac{11x+4y}{4x^2-xy+2y^2}\le\dfrac{2}{x}+\dfrac{1}{y}\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)(Đúng)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{11y+4z}{4y^2-yz+2z^2}\le\dfrac{2}{y}+\dfrac{1}{z};\dfrac{11z+4x}{4z^2-xz+2x^2}\le\dfrac{2}{z}+\dfrac{1}{x}\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}=\dfrac{3\left(xy+yz+xz\right)}{xyz}=9\)

Đẳng thức xảy ra khi \(x=y=z=1\)

16 tháng 4 2017

Câu hỏi của Neet - Toán lớp 10 | Học trực tuyến đổi biến (a,b,c)->(x,y,z) là y nhau

30 tháng 4 2017

bai 2 quen quen

30 tháng 4 2017

à bài này làm r` ở bên đây nè :D có cả 2 cách

Câu hỏi của Phúc Long Nguyễn - Toán lớp 9 - Học toán với OnlineMath

17 tháng 9 2021

1) \(x:y:z=2:3:4\) ⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

⇒ x=4;y=6;z=8

17 tháng 9 2021

\(1,\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng t/c dtsbn

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot2=4\\y=2\cdot3=6\\z=2\cdot4=8\end{matrix}\right.\)

\(2,\) Áp dụng t/c dtsbn

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{3y}{-9}=\dfrac{2z}{8}=\dfrac{4x-3y-2z}{8-\left(-9\right)-8}=\dfrac{81}{9}=9\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot\left(-3\right)=-6\\z=2\cdot4=8\end{matrix}\right.\)

\(3,4y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{6}=\dfrac{z}{8};\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{9}=\dfrac{y}{6}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}\)

Áp dụng t/c dtsbn

\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}=\dfrac{x+y+z}{9+6+8}=\dfrac{46}{23}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot6=12\\z=2\cdot8=16\end{matrix}\right.\)

\(4,5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow\dfrac{x}{9}=\dfrac{y}{15};\dfrac{y}{z}=\dfrac{3}{2}\Rightarrow\dfrac{y}{3}=\dfrac{z}{2}\Rightarrow\dfrac{y}{15}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{2x}{18}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{18+45-40}=\dfrac{34}{23}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{34}{23}\cdot9=\dfrac{306}{23}\\y=\dfrac{34}{23}\cdot15=\dfrac{510}{23}\\z=\dfrac{34}{23}\cdot10=\dfrac{340}{23}\end{matrix}\right.\)