K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

\(\left(a+10\right)+\left(a^2+10a\right)^2+2\left(a+10\right)^2=0\)

Có: \(\left\{{}\begin{matrix}\left(a^2+10a\right)^2\ge0\forall a\\2\left(a+10\right)^2\ge0\forall a\end{matrix}\right.\)

Để bt = 0 => \(\left\{{}\begin{matrix}\left(a^2+10a\right)^2=0\\2\left(a+10\right)^2=0\end{matrix}\right.\)\(\Rightarrow a=-10\)

Thay a = -10 vào a + 10 có: -10 + 10 = 0

(tm)

Vậy a = -10

15 tháng 6 2017

còn 1 nghiệm nữa mà

19 tháng 4 2015

 Vì tích (a2 -1)(a2 - 4)(a2 - 7)(a2 - 10) là tích của 4 thừa số nhỏ hơn 0

=> Có 1 hoặc 3 thừa số nhỏ hơn 0

Mà a2 - 1 > a2 - 4 > a2 - 7 > a2 - 10.

+) TH1 : Có 1 thừa số nguyên âm

=> a2 - 7 > 0   => a2 > 7 

=>  a2 - 10 < 0 => a2 < 10

=> 7< a2< 10 => a2 = 9 => a \(\in\){ 3; -3}

+) TH2 : Có 3 thừa số nguyên âm 

=> a2 - 1 > 0 => a2 > 1 

=> a2 - 4 < 0 => a2 < 4

=> 1< a2 < 4 => a2 thuộc rỗng => a thuộc rỗng

Vậy a \(\in\){3 ; -3}

7 tháng 1 2018

tích của bốn số a2 - 10, a2 - 7, a2 - 4, a2 - 1 là số âm nên phải có 1 hoặc 3 số âm. 

Ta có : a- 10 < a2 - 7 < a2 - 4 < a2 - 1.

Xét hai trường hợp :

+) có một số âm, ba số dương :

a2 - 10 < 0 < a2 - 7 \(\Rightarrow\)7 < a2 < 10 \(\Rightarrow\)a2 = 9 \(\Rightarrow\)a = \(\mp3\)

+) có ba số âm, một số dương :

a2 - 4 < 0 < a2 - 1 \(\Rightarrow\)1 < a2 < 4 \(\Rightarrow\)không có giá trị a nguyên nào thỏa mãn trường hợp trên

Vậy a = \(\mp3\)

3 tháng 7 2017

TH1:Tích có chứa 1 thừa số nguyên âm:

Ta có:\(^{a^2-1>a^2-4>a^2-7>a^2-10}\)

\(\Rightarrow\hept{\begin{cases}a^2-7>0\\a^2-10< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a^2>7\\a^2< 10\end{cases}}\)

\(\Rightarrow a^2=9\Rightarrow a=3\)

TH2: Tích có chứa 3 thừa số nguyên âm:

Ta có: \(a^2-1>a^2-4>a^2-7>a^2-10\)

\(\Rightarrow\hept{\begin{cases}a^2-1>0\\a^2-4< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a^2>1\\a^2< 4\end{cases}}\)

\(\Rightarrow\)Không có giá trị nào của a trong TH2

Vậy a=3

11 tháng 1 2017

\(\left(a^2-5\right)\left(a^2-10\right)\left(a^2-15\right)\left(a^2-20\right)< 0\)

Có 4 trường hợp .

1) a2 - 5 < 0       Hoặc        2) a2 - 10 < 0        Hoặc      3) a2 - 15 < 0      Hoặc       4) a2 - 20 < 0

=> a2 < 5                         => a2 < 10                         => a2 < 15                        => a2 < 20   

=> a < \(\sqrt{5}\)                => a < \(\sqrt{10}\)               => a < \(\sqrt{15}\)              => a < \(\sqrt{20}\)

16 tháng 3 2017

Ta có a2 - 25 < a2 - 10 < a2 - 7. Để (a2 - 7)(a2 - 10)(a2 - 25) < 0 thì ta có 2 trường hợp :

TH1 : 1 thừa số âm và 2 thừa số dương

=> a2 - 25 < 0 < a2 - 10 < a2 - 7\(\Rightarrow\hept{\begin{cases}a^2-25< 0\\a^2-10>0\end{cases}\Rightarrow\hept{\begin{cases}a^2< 25\\a^2>10\end{cases}}}\)=> a2 = 16 => a2 = -4 ; 4

TH2 : 3 thừa số đều âm

=> a2 - 25 < a2 - 10 < a2 - 7 < 0 => a2 - 7 < 0 => a2 < 7 =>\(a^2\in\) {0 ; 1 ; 4} =>\(a\in\){0 ; -1 ; 1 ; -2 ; 2}

Vậy\(a\in\){-4 ; -2 ; -1 ; 0 ; 1 ; 2 ; 4}

16 tháng 3 2017

Xét \(a^2-25\ge0\) \(\Rightarrow\hept{\begin{cases}a^2-7>0\\a^2-10>0\end{cases}}\)

\(\Rightarrow\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)\ge0\left(l\right)\)

\(\Rightarrow a^2< 25\)

\(\Rightarrow a^2=\left(0,1,4,9,16\right)\)

Thế \(a^2=0\) \(\Rightarrow\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)=\left(-7\right)\left(-10\right)\left(-25\right)< 0\left(nhan\right)\)

Tương tự ta tìm được các giá trị a2 thỏa đề bài là: 0, 1, 4, 16

\(\Rightarrow a=\left(-4,-2,-1,0,1,2,4\right)\)

7 tháng 6 2017

Tích bốn số a2 - 10, a2 - 7, a2 - 4, a2 - 1 là số âm nên phải có 1 hoặc 3 số âm.

Ta có : a2 - 10 < a2 - 7 < a2 - 7 < a2 - 4 < a2 - 1.

Xét 2 trường hợp :

TH1 : có 1 số âm, 3 số dương

a2 - 10 < a2 - 7 \(\Rightarrow\)7 < a2 < 10 \(\Rightarrow\)a2 = 9 ( do a \(\in\)Z ) \(\Rightarrow\)a = -3 hoặc a = 3

TH2 : có 3 số âm, 1 số dương 

a2 - 4 < 0 < a2 - 1 \(\Rightarrow\)1 < a2 < 4 . Do a \(\in\)Z nên không có số nguyên a nào thỏa mãn

Vậy \(a=\orbr{\begin{cases}3\\-3\end{cases}}\)

6 tháng 9 2017

A =3;-3

21 tháng 6 2017

10 - { [ ( x : 3 + 17 ) : 10 + 3 : 24 ] : 10 } = 5

[ ( x : 3 + 17 ) : 10 + 3 : 24 ] : 10 = 10 - 5 = 5

( x : 3 + 17 ) : 10 + 3 : 24 = 5 x 10

( x : 3 + 17 ) : 10 + 48 = 50

( x : 3 + 17 ) : 10 = 50 - 48

( x : 3 + 17 ) : 10 = 2

x : 3 + 17 = 2 x 10

x : 3 + 17 = 20

x : 3 = 20 - 17 = 3

x = 3 x 3 = 9

21 tháng 6 2017

a) [(2x+14) : 4 - 3] : 2 = 1

(2x+14) : 4 - 3 = 1/2

(2x+14) : 4  = 1/2 + 3

(2x+14) : 4  = 7/2

2x+14 = 7/2 . 1/4

2x = 7/8 - 1/4

2x = 5/8

x= 5/8.1/2

x= 5/16

21 tháng 6 2017

a) \(\left\{\left[\left(2x+14\right)\div2^2-3\right]\div2\right\}-1=0\)

\(\left[\left(2x+14\right)\div4-3\right]\div2=0+1\)

\(\left[\left(2x+14\right)\div4-3\right]=\left(0+1\right).2\)

\(\left(2x+14\right)\div4=\left(0+1\right).2+3\)

\(\left(2x+14\right)\div4=5\)

\(2x+14=5.4\)

\(2x+14=20\)

\(2x=20-14\)

\(2x=6\)

\(x=6\div2\)

\(x=3\)

b) Làm tương tự phần a)

21 tháng 6 2017

a){[(2x+14)/22-3]/2}-1=0

  {[(2x+14)/4-3]/2}-1 =0

 [(2x+14)/4-3]/2      =0+1

 [(2x+14)/4-3]/2      =1

 (2x+14)/4-3          =1*2

 (2x+14)/4-3          =2

 (2x+14)/4            =2+3

 (2x+14)/4           =5

 2x+14               =5*4

 2x+14               =20

 2x                    =20-14

2x                     =6

x                      =6/2

x                      =3

gio minh dang ban nen chi giai phan a thoi nhe, khi nao ranh minh se giai not phan con lai sau nhe

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
a. 

$f(-1)=a-b+c$

$f(-4)=16a-4b+c$

$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$

$\Rightarrow f(-4)=6f(-1)$

$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)

b.

$f(-2)=4a-2b+c$

$f(3)=9a+3b+c$

$\Rightarrow f(-2)+f(3)=13a+b+2c=0$

$\Rightarrow f(-2)=-f(3)$

$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)

2 tháng 3 2023

a. 


(

1
)
=



+

f(−1)=a−b+c


(

4
)
=
16


4

+

f(−4)=16a−4b+c



(

4
)

6

(

1
)
=
16


4

+


6
(



+

)
=
10

+
2


5

=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0



(

4
)
=
6

(

1
)
⇒f(−4)=6f(−1)



(

1
)

(

4
)
=

(

1
)
.
6

(

1
)
=
6
[

(

1
)
]
2

0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)] 
2
 ≥0 (đpcm)

b.


(

2
)
=
4


2

+

f(−2)=4a−2b+c


(
3
)
=
9

+
3

+

f(3)=9a+3b+c



(

2
)
+

(
3
)
=
13

+

+
2

=
0
⇒f(−2)+f(3)=13a+b+2c=0



(

2
)
=


(
3
)
⇒f(−2)=−f(3)



(

2
)

(
3
)
=

[

(
3
)
]
2

0
⇒f(−2)f(3)=−[f(3)] 
2
 ≤0 (đpcm