giải pt
a> x^2+y^2+2x-4y+5=0
b> x^2+4y^2-x-4y+5/4=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1)
(x+1)(x-7)+17>0
<=>x^2-6x+9+1>0
<=>(x-3)^2+1>0(dpcm)
..
(7)
-y^2+4y-4-|x+1|≤0
<=>-(y-2)^2-|x+1|≤0
sum 2 so khong duong ko the la so (+)=>dpcm
a) \(X^2+5X< 0\)
<=> \(X\left(X+5\right)< 0\)
<=> TH1: \(x< 0;x+5>0\Leftrightarrow-5< x< 0\)
TH2: \(x>0;x+5< 0\Leftrightarrow0< x< -5\) (vô lí)
Vậy \(-5< x< 0\)
1.(x+1)(x-7)+17=(x-3)2+1>0
2.-20-(x-5)(x+3)=-34-(x-1)2<0
3.-2(x+3)-(x-2)(x+2)=-(x+1)2-1<0
4.x2+y2+2x+2y+3=(x+1)2+(y+1)2+1>0
5.2x2+2x+y2+2y+5=2(x+1/2)2+(y+1)2+2>0
6.2x2+2y2+2xy+2x+4y+6=(x+y)2+(x+1)2+(y+2)2+1>0
7.-y2+4y-4-/x+1/=-(y-2)2-/x+1/≤0
a) x2 + y2 + 2x - 4y + 5 = 0
<=> ( x2 + 2x +1 ) + ( y2 - 4y + 4 ) = 0
<=> ( x + 1 )2 + ( y - 2 ) 2 = 0
<=> \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
b) x2 + 4y2 - x + 4y + \(\frac{5}{4}\)=0
<=> ( x2 - 2x + \(\frac{1}{4}\)) + ( 4y2 + 4y + 1 ) = 0
<=> ( x - \(\frac{1}{2}\))2 + ( 2y + 1 )2 = 0
<=> \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\2y+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\2y=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-1}{2}\end{cases}}\)
bài 1:
vì \(a+b\ge1\Leftrightarrow b\ge1-a\)
khi đó \(A\ge\dfrac{8a^2+1-a}{4a}+\left(1-a\right)^2=2a+\dfrac{1}{4a}-\dfrac{1}{4}+1-2a+a^2\)
\(=a^2+\dfrac{1}{4a}+\dfrac{3}{4}=a^2+\dfrac{1}{8a}+\dfrac{1}{8a}+\dfrac{3}{4}\)
Áp dụng BĐT cauchy:\(a^2+\dfrac{1}{8a}+\dfrac{1}{8a}\ge3\sqrt[3]{a^2.\dfrac{1}{8a}.\dfrac{1}{8a}}=\dfrac{3}{4}\)
\(\Rightarrow A\ge\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{3}{2}\)
Dấu = xảy ra khi \(a^2=\dfrac{1}{8a}\Leftrightarrow a=\dfrac{1}{2}\Rightarrow b=\dfrac{1}{2}\)
Vậy AMIN=\(\dfrac{3}{2}\)khi \(a=b=\dfrac{1}{2}\)
Bài 2:
\(A=x^2+4y^2-2x+10-4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)
\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)
\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)
\(=x^2+2xy+y^2+2x+2y+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1\)
Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)
\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)
\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)
Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)
\(D=x^2+y^2+2xy-4x-4y-3\)
\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:
\(D=4^2-4.4-3=16-16-3=-3\)
Bài 3:
a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)
\(=-\left(3x-2\right)^2-1\)
Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)
Vậy N < 0
b) ghi đề cẩn thận lại đi, mk k hiểu
a) Ta có \(x^2+y^2+2x-4y+5=0\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)=0\Leftrightarrow\left(x+1\right)^2+\left(y-2\right)^2=0\)
<=> x=-1;y=2
b)Ta có:\(x^2+4y^2-x+4y+\frac{5}{4}=0\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\left(4y^2+4y+1\right)=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\left(2y+1\right)^2=0\)
<=> x=1/2 ;y=-1/2
a, \(x^2+y^2+2x-4y+5=0\Rightarrow\left(x^2+2x+1\right)+\left(y^2-4y+4\right)=0.\)
\(\left(x+1\right)^2+\left(y-2\right)^2=0\)
\(\Rightarrow x+1=0\)và \(y-2=0\)
\(\left(+\right)x+1=0\Rightarrow x=-1\)
\(\left(+\right)y-2=0\Rightarrow y=2\)
Vậy x=-1 ; y=2
b, \(x^2+4y^2-x+4y+\frac{5}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(4y^2+4y+\frac{4}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(2y+1\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\) và \(2y+1=0\)
\(\left(+\right)x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
\(\left(+\right)2y+1=0\Rightarrow2y=-1\Rightarrow y=-\frac{1}{2}\)
Vậy \(x=\frac{1}{2};y=-\frac{1}{2}\)
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
a) x2 + y2 +2x - 4y + 5 = 0
( x2 + 2x + 1 ) + ( y2 - 4y + 4 ) = 0
( x + 1 )2 + ( y - 2 )2 = 0
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
b) \(x^2+4y^2-x-4y+\dfrac{5}{4}=0\)
\(x^2-x+\dfrac{1}{4}+4y^2-4y+1=0\)
\(\left(x-\dfrac{1}{2}\right)^2+\left(2y-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\2y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)