Tìm x,y,z biết:
y.<x+y+z>=18
x.<x+y+z>=<-12>
z.<x+y+z>=<-3>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường kính của một bánh xe là 0,6 m. Người đi xe đạp sẽ đi được bao nhiêu km, nếu bánh xe lăn trên mặt đất 1000 vòng?
\(\frac{4}{3}\ge x^2+y^2+z^2-x-y-z\ge\frac{1}{3}\left(x+y+z\right)^2-\left(x+y+z\right)\)
\(\Rightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)-4\le0\)
\(\Rightarrow\left(x+y+z+1\right)\left(x+y+z-4\right)\le0\)
\(\Rightarrow x+y+z\le4\)
\(A_{max}=4\) ; \(A_{min}\) ko tồn tại (chỉ tồn tại khi x;y;z là số thực bất kì, khi đó \(A_{min}=-1\))
\(9x^2+y^2+2z^2-18x+4y-8z+21=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2+4y+4\right)+\left(2z^2-8z+8\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y+2\right)^2+2\left(z-2\right)^2=0\)
\(mà:\left(x-1\right)^2\ge0;\left(y+2\right)^2\ge0;\left(z-2\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\\\left(z-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=2\end{matrix}\right.\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\cdot\)\(\) x2+y2 ≥ 2xy
\(\Rightarrow\left(x+y\right)^2-2xy\ge2xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\cdot\) y2+z2 ≥2yz
\(\Rightarrow\left(y+z\right)^2-2yz\ge2yz\)
\(\Rightarrow\left(y+z\right)^2\ge4yz\)
\(\cdot\) x2+z2 ≥ 2xz
\(\Rightarrow\left(x+z\right)^2-2xz\ge2xz\)
\(\Rightarrow\left(x+z\right)^2\ge4xz\)
Hai vế của bất đẳng thức trên đều không âm, nhân từng vế
\(\Rightarrow\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2\ge64x^2y^{2^{ }}z^2\)
\(\Rightarrow\left[\left(x+y\right)\left(y+z\right)\left(x+z\right)\right]^2\ge\left(8xyz\right)^2\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)
Dấu bằng xảy ra khi \(x=y=z\)