giúp mình hộ câu này nha mọi người
Cho x,y,z là các số tự nhiên thỏa mãn x+y+z=2017
Tìm giá trị lớn nhất của P=xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : với 2 số có tổng không đổi , tích của chúng lớn nhất <=> 2 số đó = nhau(tính chất)(3 số cũng vậy nha :))
=> max P <=> x=y=z=672,(3); nhưng x ; y ; z thuộc N
=> 2 số = 672 ; 1 số = 673
=> max P = 303916032
http://diendantoanhoc.net/topic/156111-t%C3%ADnh-gi%C3%A1-tr%E1%BB%8B-l%E1%BB%9Bn-nh%E1%BA%A5t-c%E1%BB%A7a-m-frac14x3yz-frac1x4y3z-frac13xy4z/
a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)
Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)
Vật bất đẳng thức được chứng minh
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)
\(4=x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow\sqrt[3]{xyz}\le\dfrac{4}{3}\Leftrightarrow xyz\le\dfrac{64}{27}\)(BĐT cauchy)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{4}{3}\)
Lời giải:
Áp dụng BĐT AM-GM:
$xy\le \frac{(x+y)^2}{4}=\frac{(4-z)^2}{4}$
$\Rightarrow H\leq \frac{z(4-z)^2}{4}$
Tiếp tục áp dụng BĐT AM-GM:
$z(4-z)\leq \frac{(z+4-z)^2}{4}=4$
$4-z\leq 2$ do $z\geq 2$
$\Rightarrow \frac{z(4-z)^2}{4}\leq \frac{4.2}{4}=2$
Hay $H\leq 2$
Vậy $H_{\max}=2$ khi $(x,y,z)=(1,1,2)$
Có \(P=\dfrac{x+z}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xy}=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}\)
\(=\dfrac{4}{y\left(x+z\right)}=\dfrac{4}{y\left(4-y\right)}=\dfrac{4}{-y^2+4y}=\dfrac{4}{-\left(y-2\right)^2+4}\ge1\)
"=" xảy ra khi y = 2 ; x = 1 ; z = 1
A=x^3 +y^3 +z^3+ 2(x/y+z +y/z+x +z/x+y) \(\ge x^3+y^3+z^3+2.\frac{3}{2}\) (bạn vào tìm BĐT nesbit là sẽ cm cái đằng sau >= 3/2)
Áp dụng cô si \(x^3+y^3+z^3\ge3xyz=3\)
===> A\(\ge3+3=6\) khi x=y=z=1
Bạn tham khảo nhé:
Ta có \(xyz=1\Rightarrow x+y+z\ge3\)
Áp dụng BĐT sờ- swat,ta có:
\(Q\ge\frac{9}{2\left(x+y+z\right)+3}\le1\)(vì \(x+y+z\ge3\))
Vậy max=1
Áp dụng bđt côsi cho 3 số x,y,z không âm ta có:
\(\dfrac{x+y+z}{3}\ge\sqrt[3]{xyz}\)
Mà \(x+y+z=2017\)
\(\Rightarrow\dfrac{2017}{3}\ge\sqrt[3]{xyz}\)
\(\Leftrightarrow xyz\le\left(\dfrac{2017}{3}\right)^3\Leftrightarrow xyz\le303916256\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{2017}{3}\)
Vậy giá trị max của \(P=303916256\\\) khi \(x=y=z=\dfrac{2017}{3}\)
bạn xem lại đề xem \(x,y,z\) là số tự nhiên hay \(x,y,z>0\)
nếu 3 số đó dương thì làm cách của mình. nếu là 3 số tự nhiên thì không làm cách đó được