K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=3x\left(1-\dfrac{x-1}{x+1}\right)\)

\(\Rightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=3x.\dfrac{x+1-\left(x-1\right)}{x+1}\)

\(\Rightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=3x.\dfrac{2}{x+1}\)

\(\Rightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{6x}{x+1}\)

\(\Rightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}-\dfrac{6x}{x+1}=0\)

\(\Rightarrow\dfrac{\left(x+1\right)^2-\left(x-1\right)^2-6x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Rightarrow\dfrac{4x-6x^2+6x}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Rightarrow\dfrac{10x-6x^2}{\left(x-1\right)\left(x+1\right)=0}\)

\(\Rightarrow10x-6x^2=0\)

\(\Rightarrow x-6x^2=0\)

\(\Rightarrow2x\left(5-3x\right)=0\)

\(\Rightarrow x\left(5-3x\right)=0\)

\(\Rightarrow5-3x=0\)

\(\Rightarrow3x=5\)

\(\Rightarrow x=\dfrac{5}{3}\)

8 tháng 6 2017

a) \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=3x\left(1-\dfrac{x-1}{x+1}\right)\)

\(\Rightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}3\left(1-\dfrac{x-1}{x+1}\right),\left(đk:x\ne1;x\ne-1\right)\)

\(\Leftrightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=3-\dfrac{3\left(x-1\right)}{x+1}\)

\(\Leftrightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=3-\dfrac{3x-3}{x+1}\)

\(\Leftrightarrow\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{3x-3}{x+1}=3\)

\(\Leftrightarrow\dfrac{\left(x+1\right)^2-\left(x-1\right)^2+\left(x-1\right)\cdot\left(3x-3\right)}{\left(x-1\right)\left(x+1\right)}=3\)

\(\Leftrightarrow\dfrac{2\cdot2x+3x^2-3x-3x+3}{\left(x-1\right)\left(x+1\right)}=3\)

\(\Leftrightarrow\dfrac{4x+3x^2-3x-3x+3}{\left(x-1\right)\left(x+1\right)}=3\)

\(\Leftrightarrow\dfrac{-2x+3x^2+3}{\left(x-1\right)\left(x+1\right)}=3\)

\(\Leftrightarrow-2x+3x^2+3=3\left(x-1\right)\left(x+1\right)\)

\(\Leftrightarrow-2x+3x^2+3=3\left(x^2-1\right)\)

\(\Leftrightarrow-2x+3x^2+3=3x^2-3\)

\(\Leftrightarrow-2x+3=-3\)

\(\Leftrightarrow-2x=-3-3\)

\(\Leftrightarrow-2x=-6\)

\(\Rightarrow x=3\left(đk:x\ne1,x\ne-1\right)\)

\(\Rightarrow x=3\)

Vậy \(x=3\)

a: Ta có: \(3x-\left(3x+2\right)=x+3\)

\(\Leftrightarrow x+3=-2\)

hay x=-5

b: Ta có: \(\dfrac{5x-1}{4}+\dfrac{2x-1}{3}=\dfrac{3x}{2}\)

\(\Leftrightarrow15x-3+8x-4=18x\)

\(\Leftrightarrow5x=7\)

hay \(x=\dfrac{7}{5}\)

5 tháng 2 2022

TK

https://lazi.vn/edu/exercise/giai-phuong-trinh-4x-5-x-1-2-x-x-1-7-x-2-3-x-5

a: \(\Leftrightarrow4x-5=2x-2+x\)

=>4x-5=3x-2

=>x=3(nhận)

b: =>7x-35=3x+6

=>4x=41

hay x=41/4(nhận)

c: \(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{28}{6\left(x-4\right)}-\dfrac{6\left(x+2\right)}{6\left(x-4\right)}=\dfrac{-9}{6\left(x-4\right)}-\dfrac{5\left(x-4\right)}{6\left(x-4\right)}\)

\(\Leftrightarrow28-6x-12=-9-5x+20\)

=>-6x+16=-5x+11

=>-x=-5

hay x=5(nhận)

d: \(\Leftrightarrow x^2+2x+1-\left(x^2-2x+1\right)=16\)

\(\Leftrightarrow4x=16\)

hay x=4(nhận)

NV
18 tháng 3 2021

1a.

ĐKXĐ: \(x\ne\left\{1;3\right\}\)

\(\Leftrightarrow\dfrac{6}{x-1}=\dfrac{4}{x-3}+\dfrac{4}{x-3}\)

\(\Leftrightarrow\dfrac{3}{x-1}=\dfrac{4}{x-3}\Leftrightarrow3\left(x-3\right)=4\left(x-1\right)\)

\(\Leftrightarrow3x-9=4x-4\Rightarrow x=-5\)

b.

ĐKXĐ: \(x\ne\left\{-1;2\right\}\)

\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{3}{2-x}+\dfrac{1}{2-x}\)

\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{4}{2-x}\Leftrightarrow5\left(2-x\right)=4\left(x+1\right)\)

\(\Leftrightarrow10-2x=4x+4\Leftrightarrow6x=6\Rightarrow x=1\)

NV
18 tháng 3 2021

1c.

ĐKXĐ: \(x\ne\left\{2;5\right\}\)

\(\Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{-3x}{\left(x-2\right)\left(x-5\right)}\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)=-3x\)

\(\Leftrightarrow2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\left(loại\right)\end{matrix}\right.\)

2a.

\(\Leftrightarrow-4x^2-5x+6=x^2+4x+4\)

\(\Leftrightarrow5x^2+9x-2=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)

2b.

\(2x^2-6x+1=0\Rightarrow x=\dfrac{3\pm\sqrt{7}}{2}\)

1: Ta có: \(\dfrac{3}{x-3}+\dfrac{4}{x+3}=\dfrac{3x-7}{x^2-9}\)

\(\Leftrightarrow\dfrac{3x+9}{\left(x-3\right)\left(x+3\right)}+\dfrac{4x-12}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-7}{\left(x-3\right)\left(x+3\right)}\)

Suy ra: \(3x+9+4x-12=3x-7\)

\(\Leftrightarrow4x=-7+12-9=-4\)

hay \(x=-1\left(nhận\right)\)

2: Ta có: \(\dfrac{3}{x-4}-\dfrac{4}{x+4}=\dfrac{3x-4}{x^2-16}\)

\(\Leftrightarrow\dfrac{3x+12}{\left(x-4\right)\left(x+4\right)}-\dfrac{4x-16}{\left(x+4\right)\left(x-4\right)}=\dfrac{3x-4}{\left(x-4\right)\left(x+4\right)}\)

Suy ra: \(3x+12-4x+16=3x-4\)

\(\Leftrightarrow28-4x=-4\)

\(\Leftrightarrow4x=32\)

hay \(x=8\left(tm\right)\)

3: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)

Suy ra: \(5x^2-12+3x+3=5x^2-5x\)

\(\Leftrightarrow3x-9+5x=0\)

\(\Leftrightarrow8x=9\)

hay \(x=\dfrac{9}{8}\left(nhận\right)\)

\(x\ne-1,x\ne2\\ \Leftrightarrow2x-4-x-1=3x-11\\ 6=2x\\ x=6:2=3_{\left(tmđk\right)}\)

22 tháng 1 2022

x≠−1,x≠2⇔2x−4−x−1=3x−116=2xx=6:2=3(tmđk)

5 tháng 2 2022

e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)

\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)

\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)

\(\Leftrightarrow x=-1\left(TM\right)\)

1: Ta có: \(\dfrac{5x^2-12}{x^2-1}+\dfrac{3}{x-1}=\dfrac{5x}{x+1}\)

\(\Leftrightarrow\dfrac{5x^2-12}{\left(x-1\right)\left(x+1\right)}+\dfrac{3x+3}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x^2-5x}{\left(x+1\right)\left(x-1\right)}\)

Suy ra: \(5x^2+3x-9=5x^2-5x\)

\(\Leftrightarrow8x=9\)

hay \(x=\dfrac{9}{8}\left(tm\right)\)

2: Ta có: \(\dfrac{3}{x-5}-\dfrac{15-3x}{x^2-25}=\dfrac{3}{x+5}\)

\(\Leftrightarrow\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}+\dfrac{3x-15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)

Suy ra: \(6x=3x-15\)

\(\Leftrightarrow3x=-15\)

hay \(x=-5\left(loại\right)\)

 

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

2. ĐKXĐ: $x\neq \pm 5$
PT \(\Leftrightarrow \frac{3}{x-5}+\frac{3x-15}{x^2-25}=\frac{3}{x+5}\)

\(\Leftrightarrow \frac{3}{x-5}+\frac{3(x-5)}{(x-5)(x+5)}=\frac{3}{x+5}\)

\(\Leftrightarrow \frac{3}{x-5}+\frac{3}{x+5}=\frac{3}{x+5}\Leftrightarrow \frac{3}{x-5}=0\) (vô lý)

Vậy pt vô nghiệm.

 

1:

a: =>28x-8=9x+3

=>19x=11

=>x=11/19

b: =>(3x-1)(x-1)=(2x+1)(x+1)

=>3x^2-4x+1=2x^2+3x+1

=>x^2-7x=0

=>x=0 hoặc x=7

1: Ta có: \(\dfrac{x+2}{x-2}+\dfrac{2}{x+2}=\dfrac{x^2}{x^2-4}\)

Suy ra: \(x^2+4x+4+2x-4=x^2\)

\(\Leftrightarrow6x=0\)

hay \(x=0\left(nhận\right)\)

2: Ta có: \(\dfrac{1}{x-6}-\dfrac{2}{x+6}=\dfrac{3x+6}{x^2-36}\)

Suy ra: \(x+6-2x+12=3x+6\)

\(\Leftrightarrow-x-3x=6-18=-12\)

hay \(x=3\left(nhận\right)\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Lời giải:
1. ĐKXĐ: $x\neq \pm 2$

PT \(\Leftrightarrow \frac{(x+2)^2+2(x-2)}{(x-2)(x+2)}=\frac{x^2}{x^2-4}\)

\(\Leftrightarrow \frac{x^2+6x}{x^2-4}=\frac{x^2}{x^2-4}\)

\(\Rightarrow x^2+6x=x^2\Leftrightarrow x=0\) (tm)

2. ĐKXĐ: $x\neq \pm 6$

PT \(\Leftrightarrow \frac{6+x-2(x-6)}{(x-6)(6+x)}=\frac{3x+6}{x^2-36}\)

\(\Leftrightarrow \frac{18-x}{x^2-36}=\frac{3x+6}{x^2-36}\)

\(\Rightarrow 18-x=3x+6\Leftrightarrow 12=4x\Leftrightarrow x=3\) (tm)

 

a: \(\Leftrightarrow4\left(2x+1\right)-3\left(6x-1\right)=2x+1\)

=>8x+4-18x+3=2x+1

=>-10x+7=2x+1

=>-12x=-6

hay x=1/2

b: \(\Leftrightarrow4x^2-12x+7x-21-x^2=3x^2+6x\)

=>5x-21=6x

=>-x=21

hay x=-21