Tìm n ϵ N: 4n+3 chia hết cho 2n + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Số số hạng là n
Tổng bằng : \(\frac{n\left(n+1\right)}{2}=378\\ \Rightarrow n\left(n+1\right)=756\\ \Rightarrow n\left(n+1\right)=27.28\\ \Rightarrow n=27\)
2) a) \(n+2⋮n-1\\ \Rightarrow n-1+3⋮n-1\\ \Rightarrow3⋮n-1\)
b) \(2n+7⋮n+1\\ \Rightarrow2\left(n+1\right)+5⋮n+1\\ \Rightarrow5⋮n+1\)
c) \(2n+1⋮6-n\\ \Rightarrow2\left(6-n\right)+13⋮6-n\\ \Rightarrow13⋮6-n\)
d) \(4n+3⋮2n+6\\ \Rightarrow2\left(2n+6\right)-9⋮2n+6\\ \Rightarrow9⋮2n+6\)
a) \(25⋮n+2\left(n\in Z\right)\)
\(\Rightarrow n+2\in\left\{-1;1;-5;5;-25;25\right\}\)
\(\Rightarrow n\in\left\{-3;-1;-7;3;-27;23\right\}\)
b) \(2n+4⋮n-1\)
\(\Rightarrow2n+4-2\left(n-1\right)⋮n-1\)
\(\Rightarrow2n+4-2n+2⋮n-1\)
\(\Rightarrow6⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-2;4;-5;7\right\}\)
c) \(1-4n⋮n+3\)
\(\Rightarrow1-4n+4\left(n+3\right)⋮n+3\)
\(\Rightarrow1-4n+4n+12⋮n+3\)
\(\Rightarrow13⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1;-13;13\right\}\)
\(\Rightarrow n\in\left\{-4;-2;-15;10\right\}\)
a) n ϵ{−3;−1;−7;3;−27;23}
b) n ∈{0;2;−1;3;−2;4;−5;7}
c) n ϵ {−4;−2;−15;10}
a, \(2n+7⋮n+1\)
\(2\left(n+1\right)+5⋮n+1\)
\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
b, \(4n+9⋮2n+3\)
\(2\left(2n+3\right)+3⋮2n+3\)
\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
2n + 3 | 1 | -1 | 3 | -3 |
2n | -2 | -4 | 0 | -6 |
n | -1 | -2 | 0 | -3 |
\(\left(n+3\right)⋮\left(n-1\right)=>\left(n-1\right)+4⋮\left(n-1\right)\\ =>4⋮\left(n-1\right)\\ =>n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{0;2;-1;3;-3;5\right\}\)
a) (n + 3) : (n + 1) = 1 (dư 2)
Vậy để n + 3 chia hết cho n + 1 thì 1 chia hết cho n + 1
\(\Rightarrow\)n + 1 \(\in\)Ư(1) = {1}
\(\Rightarrow\)n + 1 = 1
\(\Rightarrow\)n = 0
Thử lại: (0 + 3) : (0 + 1) = 3 : 1 = 3 (chia hết)
Vậy n = 0 thì n + 3 chia hết cho n + 1
b) (4n + 3) : (2n - 1) = 2 (dư 5)
Vậy để 4n + 3 chia hết cho 2n - 1 thì 5 chia hết cho 2n - 1
\(\Rightarrow\)2n - 1 \(\in\)Ư(5) = {1; 5}
\(\Rightarrow\)2n - 1 = 1; 2n - 1 = 5
\(\Rightarrow\)n = 1; n = 3
Thử lại: (4 x 1 + 3) : (2 x 1 - 1) = 7 : 1 = 7 (chia hết)
(4 x 3 + 3) : (2 x 3 - 3) = 15 : 3 = 5 (chia hết)
Vậy n = 1; n = 3 thì 4n + 3 chia hết cho 2n - 1
c) (3n + 4) : (2n + 1) = 3/2 (dư 5/2)
Vậy để 3n + 4 chia hết cho 2n + 1 thì 5/2 chia hết cho 2n + 1
\(\Rightarrow\)2n + 1 \(\in\)Ư(5/2) = {1; 5/2}
\(\Rightarrow\)2n + 1 = 1; 2n + 1 = 5/2
\(\Rightarrow\)n = 0; n = 3/4 (loại vì n \(\in\)N)
Thử lại: (3 x 0 + 4) : (2 x 0 + 1) = 4 : 1 = 4 (chia hết)
Vậy n = 0 thì 3n + 4 chia hết cho 2n + 1
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
13n−1−213n-1-2
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
6n+9⋮4n−16n+9⋮4n−1
⇒2.(6n+9)⋮4n−1⇒2.(6n+9)⋮4n−1
⇒12n+18⋮4n−1⇒12n+18⋮4n−1
⇒12n−3+21⋮4n−1⇒12n−3+21⋮4n−1
⇒3.(4n−1)+21⋮4n−1⇒3.(4n−1)+21⋮4n−1
Vì 3.(4n−1)⋮4n−1⇒21⋮4n−13.(4n−1)⋮4n−1⇒21⋮4n−1
Mà 4n - 1 chia 4 dư 3; 4n−1≥−14n−1≥−1 do n∈Nn∈N
⇒4n−1∈{−1;3;7}⇒4n−1∈{−1;3;7}
⇒4n∈{0;4;8}⇒4n∈{0;4;8}
⇒n∈{0;1;2}
a, n + 8 chia hết cho n + 1
=> n + 1 + 7 chia hết cho n + 1
=> 7 chia hết cho n + 1
=> n + 1 \(\in\)Ư ( 7 )
Mà Ư(7) = { 1 ; 7 }
+> n + 1 = 1 => n = 0
+> n + 1 = 7 => n = 6
b,
2n + 11 chia hết cho n - 3
=> 2n - 6 + 17 chia hết cho n - 3
=> 17 chia hết cho n - 3
=> n - 3 \(\in\)Ư ( 17 )
Mà Ư(17) = { 1 ; 17 }
+> n - 3 = 1 => n = 4
+> n - 3 = 17 => n = 20
c,
4n - 3 chia hết cho 2n + 1
=> 4n + 2 - 5 chia hết cho 2n + 1
=> 5 chia hết cho 2n + 1
=> 2n + 1 \(\in\)Ư ( 5 )
Mà Ư(5) = { 1 ; 5 }
+> 2n + 1 = 1 => n = 0
+> 2n + 1 = 5 => n = 2
Vì : \(2n+1⋮2n+1\Rightarrow2\left(2n+1\right)⋮2n+1\Rightarrow4n+2⋮2n+1\)
Mà : \(4n+3⋮2n+1\)
\(\Rightarrow\left(4n+3\right)-\left(4n+2\right)⋮2n+1\)
\(\Rightarrow4n+3-4n-2⋮2n+1\)
\(\Rightarrow1⋮2n+1\Rightarrow2n+1=1\Rightarrow n=0\)
Vậy n = 0 thỏa mãn
ta có:
4n+3\(⋮\)2n+1
4n+2+1\(⋮\)`2n+1
2(2n+1)+1\(⋮\)2n+1
Vì 2(n+1)\(⋮\)2n+1 nên 1\(⋮\)2n+1
=>2n+1 là Ư(1)
Ư(1)={1;-1}
n={0;-1}