Tư một điểm M nam ngoài đtròn (O) vẽ 2 tiếp tuyến MP và MQ vs đtròn (P và Q là 2 tiếp điểm ) và 1 cát tuyến MAB (A nàm giữa M và B) . Gọi I là trung điểm của AB
a, Cm 5 điểm M,P,O,I,Q cùng thuộc 1 đtròn
b, PQ cát AB tại E . Cm MP2 =ME.MI
c, quan A kẻ đường thảng song song vs MP cát PQ ,PB lần lượt tại H,K . Cm KB=2.HI
ta có : MP = MQ (tính chất tiếp tuyến)
\(\Rightarrow\) \(\Delta\) MPQ là \(\Delta\) cân \(\Rightarrow\) MPQ = MQP
mà MQP = MIP (2 góc nội tiếp cùng chắng cung MP)
\(\Rightarrow\) MPQ = MIP \(\Leftrightarrow\) MPE = MIP
xét \(\Delta\) MPE và \(\Delta\) MIP ta có :
góc M chung
MPE = MIP (chứng minh trên)
\(\Rightarrow\) \(\Delta\) MPE đồng dạng \(\Delta\) MIP (góc-góc)
\(\Rightarrow\) \(\dfrac{MP}{MI}\) = \(\dfrac{ME}{MP}\) \(\Leftrightarrow\) MP2 = ME.MI (đpcm)
xét tứ giác MPOQ ta có : MPO = 90 (MP là tiếp tuyến (o))
MQO = 90 (MQ là tiếp tuyến (o))
\(\Rightarrow\) MPO + MQO = 180
mà 2 góc này ở vị trí đối nhau
\(\Rightarrow\) tứ giác MPOQ nội tiếp
xét tứ giác MPIO ta có : MPO = 90 (MP là tiếp tuyến (o))
I là trung điểm của AB \(\Rightarrow\) MIO = 90 (quan hệ giữa đường kính và dây cung)
mà 2 góc này cùng nhìn xuồng MO \(\Rightarrow\) tứ giác MPIO nội tiếp
ta có 2 tứ giác nội tiếp MPOQ và MPIO cùng có 3 điểm chung M,P,O và các góc vuông đều nhìn xuống OM
\(\Rightarrow\) 5 điểm M,P,O,I,Q cùng thuộc 1 đường tròn đường kính MO ( đpcm)