K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

a, \(A=\dfrac{2x^3+x^2+2x+4}{2x+1}\\ =\dfrac{2x^3+x^2+2x+1+3}{2x+1}\\ =\dfrac{\left(2x+1\right)\left(x^2+1\right)+3}{2x+1}\\ =x^2+1+\dfrac{3}{2x+1}\)

Để \(A\in Z\) thì \(2x+1\inƯ\left(3\right)\)= \(\left\{\pm1;\pm3\right\}\)

=> \(2x\in\left\{-4;-2;0;2\right\}\) \(\Rightarrow x\in\left\{-2;-1;0;1\right\}\)

b, Để A vô nghĩa thì 2x+1=0 \(\Leftrightarrow\)x=\(\dfrac{-1}{2}\)

7 tháng 6 2017

ths nha

5 tháng 7 2021

Ta có : \(A=\dfrac{x^2+2x+1-4x-4+4}{x+1}\)

\(=\dfrac{\left(x+1\right)^2-4\left(x+1\right)+4}{x+1}=x+1-4+\dfrac{4}{x+1}\)

- Để A là số nguyên

\(\Leftrightarrow x+1\inƯ_{\left(4\right)}\) ( Do x là số nguyên )

\(\Leftrightarrow x+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;1;-3;3;-5\right\}\)

Vậy ....

6 tháng 7 2021

Cảm ơn nhiều nhé !

 

17 tháng 1 2018

\(A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\) ( Chữa đề nhé.)

a) \(ĐKXĐ:x\ne-3;x\ne2\)

\(\text{Với }x\ne-3;x\ne2,\text{ ta có: }A=\dfrac{x+2}{x+3}-\dfrac{5}{x^2+x-6}+\dfrac{1}{2-x}\\ =\dfrac{x+2}{x+3}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{1}{x-2}\\ =\dfrac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\dfrac{5}{\left(x+3\right)\left(x-2\right)}-\dfrac{x+3}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{\left(x+3\right)\left(x-4\right)}{\left(x-2\right)\left(x+3\right)}\\ =\dfrac{x-4}{x-2}\\ \text{Vậy }A=\dfrac{x-4}{x-2}\text{ với }x\ne-3;x\ne2\)

b) Lập bảng xét dấu:

x x-4 x-2 x-4 2 4 0 0 x-2 _ _ + _ + + 0 + _ +

\(\Rightarrow\left[{}\begin{matrix}x< 2\\x>4\end{matrix}\right.\)

Vậy để \(A>0\) thì \(x< 2\) hoặc \(x>4\)

c) \(\text{Với }x\ne-3;x\ne2\)

\(\text{Ta có : }A=\dfrac{x-4}{x-2}=\dfrac{x-2-2}{x-2}\\ =\dfrac{x-2}{x-2}-\dfrac{2}{x-2}=1-\dfrac{2}{x-2}\)

\(\Rightarrow\) Để A nhận giá trị nguyên

thì \(\Rightarrow\dfrac{2}{x-2}\in Z\)

\(\Rightarrow2⋮x-2\\ \Rightarrow x-2\inƯ_{\left(2\right)}\)

\(Ư_{\left(2\right)}=\left\{\pm1;\pm2\right\}\)

Lập bảng giá trị:

\(x-2\) \(-2\) \(-1\) \(1\) \(2\)
\(x\) \(0\left(TM\right)\) \(1\left(TM\right)\) \(3\left(TM\right)\) \(4\left(TM\right)\)

\(\Rightarrow x\in\left\{-2;-1;1;2\right\}\)

Vậy với \(x\in\left\{-2;-1;1;2\right\}\)

thì \(A\in Z\)

17 tháng 1 2018

Câu 2:

a) \(ĐKXĐ:x\ne\dfrac{3}{2};x\ne1\)

\(\text{Với }x\ne\dfrac{3}{2};x\ne1,\text{ ta có : }B=\left(\dfrac{2x}{2x^2-5x+3}-\dfrac{5}{2x-3}\right):\left(3+\dfrac{2}{1-x}\right)\\ =\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}\right]:\left(\dfrac{3\left(1-x\right)}{1-x}+\dfrac{2}{1-x}\right)\\ =\dfrac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\dfrac{3-3x+2}{\left(1-x\right)}\\ =\dfrac{\left(-3x+5\right)\cdot\left(1-x\right)}{\left(2x-3\right)\left(x-1\right)\cdot\left(-3x+5\right)}\\ =-\dfrac{1}{2x-3}\)

Vậy \(B=-\dfrac{1}{2x-3}\) với \(x\ne\dfrac{3}{2};x\ne1\)

b) \(\text{Với }x\ne\dfrac{3}{2};x\ne1\)

Để \(B=\dfrac{1}{x^2}\)

\(\text{thì }\Rightarrow\dfrac{-1}{2x-3}=\dfrac{1}{x^2}\\ \Rightarrow2x-3=-x^2\\ \Leftrightarrow2x-3+x^2=0\\ \Leftrightarrow x^2-3x+x-3=0\\ \Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\left(TM\right)\)

Vậy với \(x=-1;x=3\) thì \(B=\dfrac{1}{x^2}\)

16 tháng 1 2018

sai đề

Bài 2: 

a: Để B=1 thì \(2x^2+1=4\)

\(\Leftrightarrow x^2=\dfrac{3}{2}\)

hay \(x=\pm\dfrac{\sqrt{6}}{2}\)

b: Để B là số nguyên thì \(2x^2+1\inƯ\left(4\right)\)

\(\Leftrightarrow2x^2+1\in\left\{1;2;4\right\}\)

hay \(x\in\left\{0;\dfrac{\sqrt{2}}{2};-\dfrac{\sqrt{2}}{2};-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\right\}\)

25 tháng 2 2021

1

Áp dụng tính chất dãy tỉ số bằng nhau

`=>a/(b+c)=c/(a+b)=b/(a+c)=(a+b+c)/(2a+2b+2c)=1/2`

`=>b+c=2a`

`=>a+b+c=3a`

Hoàn toàn tương tự:

`a+b+c=3b`

`a+b+c=3c`

`=>a=b=c`

`=>A=1/2+1/2+1/2=3/2`

2

`A in Z`

`=>x+3 vdots x-2`

`=>x-2+5 vdots x-2`

`=>5 vdots x-2`

`=>x-2 in Ư(5)={1,-1,5,-5}`

`+)x-2=1=>x=3(TM)`

`+)x-2=-1=>x=1(TM)`

`+)x-2=5=>x=7(TM)`

`+)x-2=-5=>x=-3(TM)`

Vậy với `x in {1,3,-3,7}` thì `A in Z`

`A in Z`

`=>1-2x vdots x+3`

`=>-2(x+3)+1+6 vdots x+3`

`=>7 vdots x+3`

`=>x+3 in Ư(7)={1,-1,7,-7}`

`+)x+3=1=>x=-2(TM)`

`+)x+3=-1=>x=-4(TM)`

`+)x+3=-7=>x=-10(TM)`

`+)x+3=7=>x=4(TM)`

Vậy `x in {2,-4,4,10}` thì `A in Z`