\(x-\dfrac{15}{x}=2\) . tập nghiệm của pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\)
⇔ \(\dfrac{\left(x-2\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+2\right)}\ge0\)
⇔ \(\dfrac{3-6x}{\left(x+1\right)\left(x-2\right)}\) ≥ 0
⇔ \(\dfrac{2x-1}{\left(x+1\right)\left(x-2\right)}\) ≤ 0
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\-1< x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}\le x< 2\\x< -1\end{matrix}\right.\)
Vậy tập nghiệm là \(\left(-\infty;-1\right)\cup\) \(\left[\dfrac{1}{2};2\right]\)\ {2}
Bạn có thể biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn
Còn vì sao mình không biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn thì đó là một câu chuyện dài
b, tương tự, chuyển vế đổi dấu
Tập nghiệm của bất pt \(\log_{\dfrac{1}{2}}\left(x+1\right)-log_{\dfrac{1}{2}}\left(2x-1\right)< 2\)
ĐKXĐ: \(x>\dfrac{1}{2}\)
\(log_{\dfrac{1}{2}}\left(\dfrac{x+1}{2x-1}\right)< 2\)
\(\Rightarrow\dfrac{x+1}{2x-1}>\dfrac{1}{4}\)
\(\Rightarrow x>-\dfrac{5}{2}\)
Kết hợp ĐKXĐ: \(\Rightarrow x>\dfrac{1}{2}\)
\(\dfrac{1-x}{1+x}< 0 \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-x< 0\\1+x>0\end{matrix}\right.\\\left\{{}\begin{matrix}1-x>0\\1+x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left(1;+\infty\right)\\x\in\left(-\infty;-1\right)\end{matrix}\right.\)
Vậy \(x\in\left(-\infty;-1\right)\cup\left(1;+\infty\right)\) thỏa mãn
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ
ĐK: x>1
\(\log_{2^{\dfrac{1}{2}}}\left(x-1\right)+\log_{2^{-1}}\left(x+1\right)=1\)
\(\log_2\left[\left(x-1\right)^2.\left(x-1\right)^{-1}\right]=\log_22\)
=> x-1 = 2(x-1)
=> x=1 (ktmđk)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ne1\\x\ne0\end{matrix}\right.\)
PT \(\Leftrightarrow\dfrac{2x}{x\left(x-1\right)}+\dfrac{k\left(x-1\right)}{x\left(x-1\right)}=\dfrac{k}{x\left(x-1\right)}\)
\(\Leftrightarrow2x+k\left(x-1\right)=k\)
\(\Leftrightarrow2x+kx-k=k\)
\(\Leftrightarrow2x+kx-2k=0\)
\(\Leftrightarrow x\left(k+2\right)=2k\)
- Để phương trình vô nghiệm :
\(\Leftrightarrow\left\{{}\begin{matrix}k+2=0\\2k\ne0\end{matrix}\right.\)
\(\Rightarrow k=-2\) ( TM )
Vậy k = - 2 thỏa mãn yêu cầu đề bài .
\(\dfrac{2}{x-1}+\dfrac{k}{x}=\dfrac{k}{x^2-x}\)
\(\Leftrightarrow\dfrac{2x+kx-k}{x^2-x}=\dfrac{k}{x^2-x}\)
\(\Leftrightarrow\left(2+k\right)x-2k=0\)
PT vô nghiệm khi và chỉ khi \(\left\{{}\begin{matrix}2+k=0\\2k\ne0\end{matrix}\right.\)=> k = -2
Vậy PT vô nghiệm khi k = -2
\(\dfrac{x+1}{3}>\dfrac{2x-1}{6}-2\)
\(\Leftrightarrow2\left(x+1\right)>2x-1-12\)
\(\Leftrightarrow2x+2>2x-13\) \(\Leftrightarrow2x-2x>-13-2\)
\(\Leftrightarrow0x>-15\) ( luôn đúng)
Vậy bpt trên có vô số nghiệm
\(\Rightarrow\) k cần phải biểu diễn trên trục số
\(x-\dfrac{15}{x}=2\)
\(\Leftrightarrow x-\dfrac{15}{x}-2=0\)
\(\Leftrightarrow\dfrac{x^2}{x}-\dfrac{15}{x}-\dfrac{2x}{x}=0\)
\(\Leftrightarrow x^2-2x-15=0\)
\(\Leftrightarrow x^2+3x-5x-15=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy tập nghiệm của pt là S= { 5;-3 }
Ta có:x-\(\dfrac{15}x\)=2<=>\(\dfrac{x^2-15}x\)=2<=>x2-15=2x<=>x2-2x-15=0
<=>(x2-5x)+(3x-15)=0<=>x(x-5)+3(x-5)=0<=>(x+3)(x-5)=0
<=>x+3=0 hoặc x-5=0<=>x=-3 hoặc x=5
Vậy S={-3;5}