Tìm x biết:
(2x-1)3+(3x-1)2+3(x-2)(x+2)=8x3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (2x−1)2−25=0(2x−1)2−25=0
(2x−1)2=0+25=25(2x−1)2=0+25=25
(2x−1)2=52=(−5)2(2x−1)2=52=(−5)2
⇒[2x−1=52x−1=−5⇒[2x=62x=−4⇒[x=3x=−2⇒[2x−1=52x−1=−5⇒[2x=62x=−4⇒[x=3x=−2
b) 8x3−50x=08x3−50x=0
2x(4x2
a: Ta có: \(\left(2x-1\right)^2-25=0\)
\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Bài 1:
a: \(8x^3-2x=2x\left(4x^2-1\right)=2x\left(2x-1\right)\left(2x+1\right)\)
c: \(-5m^3\left(m+1\right)+m+1=\left(m+1\right)\left(-5m^3+1\right)\)
\(a,\Rightarrow4x^2-20x-4x^2+3x+4x-3=5\\ \Rightarrow-13x=8\Rightarrow x=-\dfrac{8}{13}\\ b,\Rightarrow3x^2-10x+8-3x^2+27x=-3\\ \Rightarrow17x=-11\Rightarrow x=-\dfrac{11}{17}\\ c,\Rightarrow\left(x+3\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ d,\Rightarrow2x\left(4x^2-25\right)=0\\ \Rightarrow2x\left(2x-5\right)\left(2x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\\ e,Sửa:\left(4x-3\right)^2-3x\left(3-4x\right)=0\\ \Rightarrow\left(4x-3\right)^2+3x\left(4x-3\right)=0\\ \Rightarrow\left(4x-3\right)\left(7x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a.
4x(x-5) - (x-1)(4x-3)-5=0
4x^2-20x-4x^2+3x+4x+3=0
(4x^2-4x^2)+(-20x+3x+4x)+3=0
13x+3 = 0
13x=-3
x=-3/13
b,
(3x-4)(x-2)-3x(x-9)+3=0
3x^2-6x-4x+8 - 3x^2+27x+3=0
(3x^2-3x^2)+(-6x-4x+27x)+(8+3)=0
17x+11=0
17x=-11
x=-11/17
c, 2(x+3)-x^2-3x=0
2(x+3) - x(x+3)=0
(x+3)(2-x)=0
TH1: x+3 = 0; x=-3
TH2: 2-x=0;x=2
1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)
\(=x^3+27-x^3-54\)
=-27
2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)
a: \(A=\left(x+2y\right)^3=\left(-5\right)^3=-125\)
b: \(B=\left(2x-y\right)^3=\dfrac{1}{125}\)
c: \(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-3x\left(x^2-2x+1+x+1\right)\)
\(=6x^2+2-3x\left(2x^2-x+2\right)\)
\(=6x^2+2-6x^3+3x^2-6x\)
\(=-6x^3+9x^2-6x+2\)
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
cho B(x) = 0
\(=>2\left(x-1\right)+3\left(2-x\right)=0\)
\(2x-2+6-3x=0\)
\(4-x=0\)
\(x=4\)
cho C(x) = 0
\(=>8x^3-2x=0\)
\(2x^3.4-2x=0\)
\(2x\left(4x^2-1\right)=0\)
\(=>\left[{}\begin{matrix}2x=0\\4x^2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x^2=\dfrac{1}{4}=>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
tk
https://hoc24.vn/hoi-dap/page-4?subject=1#:~:text=tr%C6%B0%E1%BB%9Bc%20(22%3A29)-,cho%20B(x)%20%3D%200,2,-%3D%3E%5B2