K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Vì p là số nguyên tố > 3 \(\Rightarrow\) p có dạng : \(3k+1;3k+2\) \(\left(k\in N\right)\)

+) TH1 : \(p=3k+1\) ta có :

\(2p+1=2\left(3k+1\right)+1=6k+3⋮3\) (hợp số) \(\rightarrow\)loại

+) TH2 : \(p=3k+2\) ta có :

\(4p+1=4\left(3k+2\right)+1=6k+5\left(TM\right)\)

Vậy \(p\) là số nguyên tố > 3 thì 4p +1 là số nguyên tố

28 tháng 12 2017

Vì 9 là SNT ( số nguyên tố ) lớn 3

=> p khi chia cho 3 có 2 dạng: 

     p = 3k + 1 hoặc p = 3k + 2 ( k thộc N* )

+) với: p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1

                                          = 6k + 2 + 1 = 6k + 3 chia hết cho 3 và lớn hơn 3

=> 2p + 1 là hợp số ( loại )

Vậy: p = 3k + 2

=> 4p + 1 = 4 . ( 3k + 2 ) + 1

               = 12k + 8 + 1 = 12k + 9 chia hết cho 3 và lớn hơn 3

=> 4p + 1 là hợp số ( điều phải chứng minh )

Kết luận: 

28 tháng 12 2017

p nguyên tố > 3

=> p chia 3 dư 1,2

=> 2p + 1 chia 3 dư 0, 2

Mà 2p+1 nguên tố <=> 2p+1 chia 3 dư 2 <=> p chia 3 dư 2

=> 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 chia hết cho 3

=> 4p+1 là hợp số

11 tháng 1 2016

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2

+ Nếu p=3k+1 thì chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+ Vậy p có dạng 3k+2

Khi đó chia hết cho 3

Vậy 4p+1 là hợp số

tick nha

6 tháng 6 2020

Vì p là số nguyên tố lớn hơn 3 

=> p có dạng 3k+1; 3k+2 (k\(\inℕ^∗\))

Thay p=3k+1 vào 2p+1 ta có:

2p+1=2(3k+1)+1=6k+2+1=6k+3

Thấy \(\hept{\begin{cases}6k⋮3\\3⋮3\end{cases}\Rightarrow6k+3⋮3}\)

=> 2p+1 là hợp số (loại)

Thay p=3k+2 vào 2p+1 ta có: 

2p+1=2(3k+2)+1=6k+5 là số nguyên tố (chọn)

Với p=3k+2 => 4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số

Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số

17 tháng 12 2023
Vì p là số nguyên tố lớn hơn 3 nên p \cancel{vdots} 3 ⇒ p có dạng 3k + 1 hoặc 3k + 2 ( k ∈ N** ) Xét p = 3k + 1 ⇒ 2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 vdots 3 ( là hợp số ) ( Loại ) ⇒ p có dạng 3k + 2 ⇒ 4p + 1 = 4 . ( 3k  +2 ) + 1 = 12k + 8 + 1 = 12k + 9 vdots 3 ( là hợp số ) Vậy , 4p + 1 là hợp số .  
16 tháng 5 2016

vì p là số nguyên tố >3 =>p=3k+1 hoặc 3k+2 k là stn                                                                                                                                 nếu p =3k+1 thì 2p+1=2(3k+1)+1=6k+3=6(k+2) chia hết cho 6 là hợp số loại=>p=3k+2                                                                                             nếu p=3k+2 thì 4p+1=4(3k+2)+1=12k+9=3(4k+3) chia het cho 3 là hợp số (đúng)                                                                                   =>4p+1 là hợp số                                                                                                                                                                                phần tiếp theo tương tự như thế      K TỚ NHÁ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

16 tháng 5 2016

SRTJR

6 tháng 10 2019

Vì p là SNT >3\(\Rightarrow p\)có dạng 3k+1

                                     hoặc 3k+2       ( k\(\in\)N*)

+) Với \(p=3k+2\Rightarrow4p+1=4.\left(3k+2\right)+1=12k+8+1=12k+9=3\left(4k+3\right)⋮3\)

                                     Do  k\(\in\)N*\(\Rightarrow4k+3>0\)

\(\Rightarrow3\left(4k+3\right)\)là hợp số 

\(\Rightarrow3k+2\)( loại)

+) Với \(p=3k+1\Rightarrow4p+1=4.\left(3k+1\right)+1=12k+4+1=12k+5\)( là số nguyên tố) 

\(\Rightarrow2p+1=2\left(3k+1\right)+1=6k+2+1=6k+3=3\left(2k+1\right)⋮3\)

                    Do  k\(\in\)N*\(\Rightarrow3\left(2k+1\right)>0\)

\(\Rightarrow3\left(2k+1\right)\)là hợp số
Vậy Nếu 4p+1 là SNT thì 2p+1 là hợp số 
6 tháng 10 2019

Bổ sung chỗ 

\(\Rightarrow p=3k+2\)( loại ) nhé em

p là số nguyên tố lớn hơn 3 nên chắc chắn p ko chia hết cho 3

=>2p ko chia hết cho 3

mà 2p+1 nguyên tố

nên 2p+2 chia hết cho 3

=>2(2p+2) chia hết cho 3

=>4p+4 chia hết cho 3

=>4p+1 chia hết cho 3

=>4p+1 là hợp số(đpcm)

Xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2, trong 3 số này có 1 số chia hết cho 3

Do p nguyên tố > 3 => p không chia hết cho 3 => 4p không chia hết cho 3

2p + 1 cũng là số nguyên tố > 3 => 2p + 1 không chia hết cho 3 => 2.(2p + 1) hay 4p + 2 không chia hết cho 3

=> 4p + 1 chia hết cho 3

Mà 1 < 3 < 4p + 1 => 4p + 1 là hợp số

18 tháng 8 2018

vì p là SNT lớn hơn 3 => p=3k+1 hoặc p=3k+2 (k thuộc N*)

nếu p=3k+1

thì 2p+1=2.(3k+1)+1=6k+2+1=6k+3 chia hết cho 3(KTM)

nếu p=3k+2

thì 2p+1=2.(3k+2)+1=6k+4+1=6k+5 ko chia hết cho 3(TM)

=> p=3k+2

khi đó 4p+1=4.(3k+2)+1=12k+8+1=12k+9 chia hết cho 3.vậy nếu p là SNT lớn hơn 3 thì 4p+1 lag hợp số

bài này toán nâng cao l6 nha

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
Vì $p$ là số nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$

Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=3(2k+1)\vdots 3$
Mà $2p+1>3$ nên $2p+1$ không là số nguyên tố (trái giả thiết)

Do đó $p=3k+2$. Khi đó:
$4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ với mọi $p>3$ nên $4p+1$ là hợp số.

Ta có đpcm.