K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Ta có:

\(S=\dfrac{3}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\right)\)

\(S=1.\left(\dfrac{1}{1}-\dfrac{1}{46}\right)\)

\(S=1.\dfrac{45}{46}=\dfrac{45}{46}\)

\(\dfrac{45}{46}< \dfrac{46}{46}\) nên \(\dfrac{45}{46}< 1\).

Vậy S < 1.

25 tháng 5 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{43.46}\)

\(S=\dfrac{3}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{43.46}\right)\)

Ta thấy:

\(\dfrac{3}{1.4}=1-\dfrac{1}{4};\dfrac{3}{4.7}=\dfrac{1}{4}-\dfrac{1}{7};\dfrac{3}{7.10}=\dfrac{1}{7}-\dfrac{1}{10};\)

\(...;\dfrac{3}{43.46}=\dfrac{1}{43}-\dfrac{1}{46}\)

\(\Rightarrow S=1\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{43}-\dfrac{1}{46}\right)\)

\(\Rightarrow S=1\left(1-\dfrac{1}{46}\right)\)

\(\Rightarrow S=1.\dfrac{45}{46}=\dfrac{45}{46}\)

12 tháng 4 2017

\(S=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{43\cdot46}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\)

\(S=1-\dfrac{1}{46}< 1\)

25 tháng 4 2017

S= \(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{40\cdot43}+\dfrac{3}{43\cdot46}\)

S= \(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{42}-\dfrac{1}{46}\)

S= \(1-\dfrac{1}{46}\)

S= \(\dfrac{45}{46}\)

\(\dfrac{45}{46}< 1\)

\(\Rightarrow S< 1\)

Vậy S < 1

1 tháng 5 2021

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\\ S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\\ S=1-\dfrac{1}{46}< 1\)

Vậy S < 1 (đpcm)

1 tháng 5 2021

cảm ơn cậu nhiều na

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cậu thấy mik xinh hum????

2 tháng 7 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...................+\dfrac{3}{n\left(n+1\right)}\)

\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.............+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow S=1-\dfrac{1}{n+1}< 1\)

\(\Rightarrow S< 1\rightarrowđpcm\)

2 tháng 7 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n.\left(n+1\right)}\)

\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...-\dfrac{1}{n+1}\)

\(S=1-\dfrac{1}{n+1}\)\(< 1\)

\(\Leftrightarrow S< 1\)

tik cho mik nhé

2 tháng 5 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n\left(n+3\right)}\)

\(\Rightarrow S=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{\left(n+3\right)-n}{n\left(n+3\right)}\)

\(\Rightarrow S=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{n+3}{n\left(n+3\right)}-\dfrac{n}{n\left(n+3\right)}\)

\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\)

\(\Rightarrow S=1-\dfrac{1}{n+3}< 1\Rightarrow S< 1\)

Vậy S < 1

28 tháng 7 2017

S=\(\dfrac{3}{1.4}\)+\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{43.46}\)

S<\(\dfrac{1}{1}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+...+\(\dfrac{1}{43}\)-\(\dfrac{1}{46}\)

S< \(\dfrac{1}{1}\)-\(\dfrac{1}{46}\)

S<\(\dfrac{45}{46}\)<1

Vậy S< 1

Chúc bạn học tốt , tick cho mk nhéhihi

28 tháng 7 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{34.46}\)

\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\)

\(S=1-\dfrac{1}{46}\)

\(S=\dfrac{45}{46}< 1\)

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{34.46}< 1\)

\(\Rightarrow S< 1\) (đpcm)

11 tháng 6 2015

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(=1-\frac{1}{46}<1\)

Vậy S<1 (ĐPCM)

20 tháng 7 2015

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{10}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(=1-\frac{1}{46}\)

Vì \(1-\frac{1}{46}\) < 1

=> \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\) < 1

7 tháng 5 2016

Như trên

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{43}-\frac{1}{46}..\)

\(S=1-\frac{1}{46}< 1\)

VẬY S<1

30 tháng 4 2017

\(S=\frac{3}{1.4} +\frac{3}{4.7}+\frac{3}{7.10}+....+\frac{3}{40.43}+\frac{3}{43.46}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}\)

=> S<1 (ĐCCM)

27 tháng 2 2022

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{40.43}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{40}-\dfrac{1}{43}\\ =1-\dfrac{1}{43}\\ =\dfrac{42}{43}\)

27 tháng 2 2022

e) 3/1.4 + 3/4.7 + 3/7.10+ ... + 3/40.43
= 1-1/4 + 1/4 -1/7 + 1/7-1/10+...+1/40-1/43
= 1-1/43
= 42/43