K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2018

Đáp án D

Ta có

Khi đó

Suy ra

đồng

4 tháng 8 2019

 

Đáp án D

Ta có

M x = T x x = C x + 0 , 4 x x = 0 , 0001 x 2 + 0 , 2 x + 10000 x = 0 , 0001 x + 0 , 2 + 10000 x

Khi đó

M x = 0 , 0001 x + 10000 x + 0 , 2 ≥ 0 , 0001 x . 10000 x + 0 , 2 = 2 , 2  

Suy ra

M i n M x = 2 , 2 ⇔ 0 , 0001 x = 10000 x ⇔ x = 10000 ⇒ M x = 22.00   đ ồ n g

 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\overline C \left( x \right) = \frac{{C\left( x \right)}}{x} = \frac{{50000 + 105x}}{x}\)

b) \(\mathop {\lim }\limits_{x \to  + \infty } \overline C \left( x \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{50000 + 105x}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {\frac{{50000}}{x} + 105} \right)}}{x} = \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{50000}}{x} + 105} \right) = 0 + 105 = 105\)

Vậy khi số sản phẩm càng lớn thì chi phí trung bình để sản xuất một sản phẩm tối đa 105 (nghìn đồng). 

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Doanh thu khi bán Q sản phẩm là 170Q nghìn đồng.

Lợi nhuận khi bán Q sản phẩm là \(170Q - \left( {{Q^2} + 30Q + 3300} \right)\)\( =  - {Q^2} + 140Q - 3300\)(nghìn đồng)

Để không bị lỗ thì \( - {Q^2} + 140Q - 3300 \ge 0\left( 1 \right)\)

\(a =  - 1 < 0;\Delta ' = 1600\)

\( - {Q^2} + 140Q - 3300 = 0\) có 2 nghiệm phân biệt \({x_1} = 30,{x_2} = 110\)

(1)\( \Leftrightarrow \)\(30 \le x \le 110\)

Vậy để không bị lỗ thì số sản phẩm được sản suất phải nằm trong khoảng từ 30 đến 110 sản phẩm.

9 tháng 5 2018

Đáp án C

Giả sử có n máy thì chi phí cố định là 50n ( n   =   1 ;   2 ;   3 ; . . . . ; 8 )

Để tin 50000 tờ cần 5000 3600 n   =   125 9 n  (giờ in)

Chi phí cho n máy chạy trong một giờ là: 10(6n + 10) nghìn đồng

Khi đó, tổng chi phí để in 50000 tờ quảng cáo là :

 

(thay 4 giá trị xem giá trị nào cho kết quả nhỏ nhất)

Lại có f(5) < f(6) nên ta sử dụng 5 máy để chi phí nhỏ nhất

31 tháng 3 2018

Chọn C.

Gọi x 0 ≤ x ≤ 8 ; x ∈ Z  là số máy in sử dụng trong một giờ để được lãi nhiều nhất. Khi đó chi phí dành cho x máy in trong một giờ là 10(6x+10)=60x+100 nghìn đồng.

Chi phí vận hành 50x nghìn đồng.

Số bản in trong một giờ là 3600x suy ra thời gian để in xong 50000 tờ quảng cáo là 50000 3600 x = 125 9 x  giờ

Vậy tổng chi phí là f x = 60 x + 100 25 9 x + 50 x  nghìn đồng

Để lãi là nhiều nhất thì tổng chi phí là thấp nhất, vậy ta tìm giá trị nhỏ nhất của tổng chi phí.

Thay các giá trị x = 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8  ta thấy giá trị nhỏ nhất là  f 5 = 12250 9 .

24 tháng 3 2018

Đáp án C

Giả sử có n máy thì chi phí cố định là

50 n   n = 1 ; 2 ; 3...8

Để in 50000 tờ cần 5000 3600. n = 125 9 n (giờ in).

Chi phí cho n máy chạy trong một giờ là 10 6 n + 10  nghìn đồng.

Khi đó, tổng chi phí để in 50000 tờ quảng cáo là:

f n = 50 n + 10 6 n + 10 .125 9 n = 450 n 2 + 7500 n + 1250 9 n

( Đến đây các em có thể thay 4 giá trị xem giá trị nào cho kết quả nhỏ nhất).

Ta có: f ' n = 0 ⇔ n = 5 3 10 ≈ 5 , 27

Lại có: f 5 < f 6  nên ta cần sử dụng 5 máy để chi phí nhỏ nhất.

16 tháng 3 2018

Đáp án C

Gọi f n  là hàm chi phí in 50000 tờ quảng cáo 0 < n ≤ 8 ; n ∈ ℕ . Ta cần tìm n để f(n) có giá trị thấp nhất. Theo giả thiết f(n) bao gồm chi phí vận hành cho n máy là 50n nghìn  đồng. Và chi phí chạy máy sản xuất 50000 tờ quảng cáo là: 50000 3600 n 10 6 n + 10 = 2500 9 n 3 n + 5  

Vậy  f ( n ) = 50 n + 2500 9 n 3 n + 5 = 50 n + 250 9 n + 2500 3

Đến đây ta có thể khảo sát hàm f(n) với nnguyên để tìm chi phí thấp nhất hoặc kiểm tra trực tiếp bốn đáp án và được kết quả thấp nhất với n=5.

15 tháng 10 2017

Chọn C.

Gọi  là số máy in sử dụng trong một giờ để được lãi nhiều nhất. Khi đó chi phí dành cho x máy in trong một giờ là  nghìn đồng.

Chi phí vận hành 50x nghìn đồng.

Số bản in trong một giờ là 3600x => thời gian để in xong 50000 tờ quảng cáo là 

Vậy tổng chi phí là  nghìn đồng

Để lãi là nhiều nhất thì tổng chi phí là thấp nhất, vậy ta tìm giá trị nhỏ nhất của tổng chi phí.

Thay các giá trị x = {1;2;3;4;5;6;7;8} ta thấy giá trị nhỏ nhất là