tìm phân số p sao cho:p+10 và p+20 cũng là các số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số.
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố.
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số.
Vậy p = 3.
2.
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007.
Vậy r(x) = 1007x + 1007.
3.
Với a,b > 0, dùng bất đẳng thức CauChy thì có
(a + b)/4 >= can(ab)/2 (1),
2(a + b) + 1 >= 2can[2(a + b)].
Dùng bất đẳng thức Bunhiacopski thì có
can[2(a + b)] >= can(a) + can(b);
thành thử
2(a + b) + 1 >= 2[can(a) + can(b)] (2).
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)],
hay
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a).
Dấu bằng đạt được khi a = b = 1/4.
+,p=2=>p+10=12 là hợp số(KTM)
+,p=3=>p+10=13 (số nguyên tố)=>p+20=23(số nguyên tố)
+, p>3=>p=3k+1 hoặc 3k+2
+,p=3k+1=>p+20=3k+1+20=3k+21 chia hết cho 3
=>p+20 có ít nhất 3 ước là: 1;3;p+20
=>p+20 là hợp số(KTM)
+,p=3k+2=>p+10=3k+2+10=3k+12 chia hết cho 3
=>p+10 có ít nhất ba ước là: 1;3;p+10
=>p+10 là hợp số.
Vậy p=3 thỏa mãn.
Chúc bạn thành công trong học tập
Với \(p=2\Rightarrow p+10=2+10=12\) ( không là số nguyên tố )
=> loại
Với \(p=3\Rightarrow p+10=3+10=13\)
\(\Rightarrow p+20=20+3=23\) ( đều là các số nguyên tố )
=> chọn
Nếu p chia cho 3 dư 1 \(\Rightarrow p=3k+1\left(k\in N\right)\)
\(\Rightarrow p+20=3k+1+20\)
\(=3k+21=3\left(k+7\right)⋮3\)
( Vì \(3⋮3;k\in N\Rightarrow k+7\in N\) )
\(\Rightarrow3\left(k+7\right)\) là hợp số ; hay p + 20 là hợp số
=> loại
Nếu p chia cho 3 dư 2 \(\Rightarrow p=3k+2\left(k\in N\right)\)
\(\Rightarrow p+10=3k+2+10\)
\(=3k+12=3\left(k+4\right)⋮3\)
( Vì \(3⋮3;k\in N\Rightarrow k+4\in N\) )
\(\Rightarrow3\left(k+4\right)\) là hợp số ; hay p + 10 là hợp số
=> loại
Vậy p = 3 thỏa mãn đề bài