K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Với \(p=2\Rightarrow p+10=2+10=12\) ( không là số nguyên tố )

=> loại

Với \(p=3\Rightarrow p+10=3+10=13\)

\(\Rightarrow p+20=20+3=23\) ( đều là các số nguyên tố )

=> chọn

Nếu p chia cho 3 dư 1 \(\Rightarrow p=3k+1\left(k\in N\right)\)

\(\Rightarrow p+20=3k+1+20\)

\(=3k+21=3\left(k+7\right)⋮3\)

( Vì \(3⋮3;k\in N\Rightarrow k+7\in N\) )

\(\Rightarrow3\left(k+7\right)\) là hợp số ; hay p + 20 là hợp số

=> loại

Nếu p chia cho 3 dư 2 \(\Rightarrow p=3k+2\left(k\in N\right)\)

\(\Rightarrow p+10=3k+2+10\)

\(=3k+12=3\left(k+4\right)⋮3\)

( Vì \(3⋮3;k\in N\Rightarrow k+4\in N\) )

\(\Rightarrow3\left(k+4\right)\) là hợp số ; hay p + 10 là hợp số

=> loại

Vậy p = 3 thỏa mãn đề bài

15 tháng 11 2017

Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số. 
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số. 
Vậy p = 3. 
2. 
Giả sử f(x) chia cho 1 - x^2 được thương là g(x) và dư là r(x). Vì 1 - x^2 có bậc là 2 nên r(x) có bậc tối đa là 1, suy ra r(x) = ax + b. Từ đó f(x) = (1 - x^2)g(x) + ax + b, suy ra f(1) = a + b và f(-1) = -a + b; hay a + b = 2014 và -a + b = 0, suy ra a = b = 1007. 
Vậy r(x) = 1007x + 1007. 
3. 
Với a,b > 0, dùng bất đẳng thức CauChy thì có 
(a + b)/4 >= can(ab)/2 (1), 
2(a + b) + 1 >= 2can[2(a + b)]. 
Dùng bất đẳng thức Bunhiacopski thì có 
can[2(a + b)] >= can(a) + can(b); 
thành thử 
2(a + b) + 1 >= 2[can(a) + can(b)] (2). 
Vì các vế của (1) và (2) đều dương nên nhân chúng theo vế thì có 
[(a + b)/4][2(a + b) + 1] >= can(ab)[can(a) + can(b)], 
hay 
(a + b)^2/2 + (a + b)/4 >= acan(b) + bcan(a). 
Dấu bằng đạt được khi a = b = 1/4.

17 tháng 11 2017

Đáp số : 3

14 tháng 8 2017

+,p=2=>p+10=12 là hợp số(KTM)

+,p=3=>p+10=13 (số nguyên tố)=>p+20=23(số nguyên tố)

+, p>3=>p=3k+1 hoặc 3k+2

            +,p=3k+1=>p+20=3k+1+20=3k+21 chia hết cho 3

                           =>p+20 có ít nhất 3 ước là: 1;3;p+20

                           =>p+20 là hợp số(KTM)

           +,p=3k+2=>p+10=3k+2+10=3k+12 chia hết cho 3

                          =>p+10 có ít nhất ba ước là: 1;3;p+10

                          =>p+10 là hợp số.

            Vậy p=3 thỏa mãn.

       Chúc bạn thành công trong học tập

20 tháng 8 2021

Cảm ơn chị nhé em cũng đang rất cần

11 tháng 12 2018

Xet p=2;p=5;p=3

Sau do xet p>5

2 tháng 11 2016

mình mới lớp 5 chưa trả lời được

2 tháng 11 2016

ai giúp mình đc k

8 tháng 3 2019

bài toán có cách giải như sau. Chứng minh mọi số chính phương chia 8 dư 0 hoặc 1. Mà 8q-1 chia 8 dư 7 nên vô lí nên ko có p,q thỏa mãn.