có thể lập bao nhiu số có chữ số khác nhau chia hết cho 3 từ các số {0;1;2;3;4;5;6}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Lập số có 3 chữ số thì chữ số hàng trăm phải khác 0, nên chữ số hàng trăm có 3 cách chọn (3,5,6). Hàng chục có 3 cách chọn, hàng đơn vị có 2 cách chọn.
Vậy số các số phải tìm là: 3 x 3 x 2 = 18 (số)
b. Trong các số trên các số chia hết cho 9 là: 306, 360, 603, 630.
Có thể lập được bao nhiêu số có 4 chữ số khác nhau từ các chữ số trên sao cho số vừa lập được chia hết cho 2 và 5 là 2350 ; 2530 ; 3250 ; 3520 ; 5230 ; 5320
a) Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)
b) Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).
Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:
8. 3! = 48 (số)
Các bộ số có thể là (0;3;6); (0;1;5); (0;4;8); (0;1;8); (0;4;5); (1;3;5); (1;3;8); (1;5;6); (3;4;5); (3;4;8); (4;6;8)
Với các bộ (0;3;6); (0;1;5); (0;4;8); (0;1;8); (0;4;5) thì có thể lập được:
\(2\cdot2\cdot1\cdot5=20\left(số\right)\)
Với các bộ còn lại thì lập được 3!*6=6*6=36 số
=>Có 20+36=56 số
đáp án là 61, có phần nào chưa rõ mong mn chỉ bảo em thêm với ạ, lần đầu làm có hơi bỡ ngỡ một chút, khó tránh khỏi sai sót.