K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

19 tháng 3 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

1 tháng 2 2019

Ta có: 

Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1) 

suy ra MN // BC (1) (Định lý Ta-lét đảo).

- Lại có: MN ∩ (MNI) (2)

- Từ (1) và (2) suy ra: BC // (MNI)

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

1 tháng 9 2017

Đáp án B

Xét (MNK) và (ABD) có:

N là điểm chung

AB // MK ⇒ A B ⫽ M N K

⇒ Giao tuyến của 2 mặt phẳng là đường thẳng d đi qua N và song song AB

d cắt AB tại điểm F cần tìm

Vì FN // AB ( cách dựng)

20 tháng 8 2018

+) Vì I, J lần lượt là trung điểm của BD, CD nên IJ là đường trung bình của tam giác BCD. Từ đó suy ra: IJ // BC (3) .

- Từ (1) và (3) suy ra: MN // IJ .

→ Vậy tứ giác MNJI là hình thang.

+) Để MNJI là hình bình hành thì: MI// NJ.

- Lại có ba mặt phẳng (MNJI); (ABD); (ACD) đôi một cắt nhau theo các giao tuyến là MI, NJ, AD nên theo định lý 1 ta có: MI // AD // NJ (4)

- Mà I; J lần lượt là trung điểm BD,CD (5)

- Từ (4)và (5) suy ra: M, N lần lượt là trung điểm của AB, AC.

⇒ Vậy điều kiện để hình thang MNJI trở thành hình bình hành là M, N lần lượt là trung điểm của AB, AC.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


Giả sử K là trung điểm của AC

Suy ra M,N lần lượt là trọng tâm của tam giác ABC và tam giác ACD

Do đó, tam giác KBC có:\(\frac{{KM}}{{KB}} = \frac{{KN}}{{KD}} = \frac{1}{3}\)

Suy ra MN // BD

Chứng minh tương tự với trường hợp K bất kỳ

25 tháng 12 2020

Ta sẽ áp dụng Menelaus cho 2 tam giác BCD và ABC

À quên cái dạo đầu :v

Vì lười chụp hình nên đánh máy vậy

Tìm giao điểm giữa CD và (MNQ) trước

Gán CD vô (BCD) => giao tuyến giữa (BDC) và (MNQ) là QK (K là giao điểm của MN với BC)

=> QK cắt CD tại P => (MNQ) cắt CD tại P

Rồi giờ áp dụng Menelaus cho tam giác ABC trước

\(\dfrac{AM}{MB}.\dfrac{BK}{KC}.\dfrac{CN}{NA}=1\Leftrightarrow\dfrac{1}{2}.\dfrac{BK}{KC}.1=1\Rightarrow BK=2KC\)

Áp dụng Menelaus cho tam giác BCD

\(\dfrac{BK}{KC}.\dfrac{CP}{PD}.\dfrac{DQ}{QB}=1\Leftrightarrow2.\dfrac{CP}{PD}.1=1\Rightarrow CP=\dfrac{1}{2}PD\)

\(\Rightarrow\dfrac{CP}{CD}=\dfrac{1}{3}\)

 

4 tháng 6 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Nên

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ (3) và (4) ta suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

là đẳng thức cần chứng minh.

23 tháng 1 2017

Đáp án C