\(4^{15}.9^{15}<2^{^x}.3^x<2^{16}.18^{16}\)
CHÚ Ý: NHÂN TRONG CẤP 2 CÒN ĐƯỢC VIẾT LÀ DẤU .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{-15}{4}.\dfrac{9}{11}+\dfrac{15}{4}.\dfrac{15}{11}-\dfrac{15}{4}.\dfrac{6}{11}\)
= \(\dfrac{15}{4}.\dfrac{-9}{11}+\dfrac{15}{4}.\dfrac{15}{11}-\dfrac{15}{4}.\dfrac{6}{11}\)
= \(\dfrac{15}{4}.\left(\dfrac{-9}{11}+\dfrac{15}{11}-\dfrac{6}{11}\right)\)
= \(\dfrac{15}{4}.\left(\dfrac{6}{11}-\dfrac{6}{11}\right)\)
= \(\dfrac{15}{4}.\left(\dfrac{0}{11}\right)\)
= \(\dfrac{15}{4}.0\)
= 0
4/9.8/15+4/19.7/15-4/9
=4/9.(8/15+7/15)-4/9
=4/9.1-4/9
=4/9-4/9
=0
...=-15-9=-24
...=4+7=11
...=-12-13=-25
...=13+10=23
...=-4-7=-11
...=-9+13=4
...=12+0=12
...=0-7=-7
...=0+3=3
...=15-17=-2
...=-6
...=-23
...=15-15=0
câu a :
\(\dfrac{-8}{24}+\dfrac{-4}{12}=\dfrac{-1}{3}+\dfrac{-1}{3}=\dfrac{-2}{3}\)
câu b :
\(\dfrac{-20}{35}+\dfrac{16}{24}=\dfrac{-4}{7}+\dfrac{2}{3}=\dfrac{2}{21}\)
câu c :
\(\dfrac{-3}{9}+\dfrac{-6}{15}=\dfrac{-1}{3}+\dfrac{-2}{5}=\dfrac{-11}{15}\)
câu d :
\(\dfrac{3}{13}-\dfrac{4}{10}=\dfrac{3}{13}-\dfrac{2}{5}=\dfrac{-11}{65}\)
câu e :
\(\dfrac{5}{17}-\dfrac{9}{15}=\dfrac{5}{17}-\dfrac{3}{5}=\dfrac{-26}{85}\)
câu g :
\(\dfrac{9}{18}-\dfrac{6}{15}+\dfrac{3}{-9}=\dfrac{9}{18}-\dfrac{6}{15}+\dfrac{-3}{9}\\ =\dfrac{1}{2}-\dfrac{2}{5}+\dfrac{-1}{3}=\dfrac{-7}{30}\)
câu h :
\(\dfrac{5}{4}-\dfrac{1}{2}+\dfrac{-7}{8}=\dfrac{10}{8}-\dfrac{4}{8}+\dfrac{-7}{8}=\dfrac{-1}{8}\)
\(\dfrac{1}{15}-\dfrac{2}{15}+\dfrac{3}{15}-\dfrac{4}{15}+\dfrac{5}{15}-\dfrac{6}{15}+\dfrac{7}{15}-\dfrac{8}{15}+\dfrac{9}{15}\)
\(=\dfrac{1-2+3-4+5-6+7-8+9}{15}\)
\(=\dfrac{\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+9}{15}\) => có 4 cặp
\(=\dfrac{\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+9}{15}\)
\(=\dfrac{\left(-1\right).4+9}{15}\)
\(=\dfrac{\left(-4\right)+9}{15}\)
\(=\dfrac{5}{15}=\dfrac{1}{3}\)
\(\Rightarrow36^{15}<6^x<36^{16}\Rightarrow6^{30}<6^x<6^{32}\Rightarrow30
\(4^{15}.9^{15}<2^{^x}.3^x<2^{16}.18^{16}\)
\(\Rightarrow36^{15}<6^x<36^{16}\)
\(\Rightarrow\left(6^2\right)^{15}<6^x<\left(6^2\right)^{16}\)
\(\Rightarrow6^{30}<6^x<6^{32}\)
=> 30<x<32
\(\Rightarrow x=31\)