K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

a) Ta có: \(\left(a+b\right).\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)

b) Ta có: \(\left(a-b\right).\left(a-b\right)=a^2-ab-ab+b^2=a^2-2ab+b^2\)

8 tháng 8 2021

A = (3,1 – 2,5)  – (-2,5 + 3,1) = 3,1 – 2,5 + 2,5 – 3,1 = 0

B  = (5,3 – 2,8) – (4 + 5,3) = 5,3 – 2,8 – 4 – 5,3

8 tháng 8 2021

A=(3,1-2,5)-(-2,5+3,1)=3,1-2,5+2,5-3,1=0

B=(5,3-2,8)-(4+5,3)=5,3-2,8-4-5,3=-6,8

19 tháng 8 2020

a) \(A=\left(a-2b+c\right)-\left(a-2b-c\right)\)

\(A=a-2b+c-a+2b+c=2c\)

b) \(B=\left(-x-y+3\right)-\left(-x+2-y\right)\)

\(B=-x-y+3+x-2+y=1\)

c) \(C=2\left(3a+b-1\right)-3\left(2a+b-2\right)\)

\(C=6a+2b-2-6a-3b+6=4-b\)

19 tháng 8 2020

a. \(A=\left(a-2b+c\right)-\left(a-2b-c\right)=a-2b+c-a+2b+c=0\) 

b. \(B=\left(-x-y+3\right)-\left(-x+2-y\right)=-x-y+3+x-2+y=1\)

c. \(C=2\left(3a+b-1\right)-3\left(2a+b-2\right)=6a+2b-2-6b-3b+6=4-3b\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\begin{array}{l}\cos \left( {a + b} \right) + \cos \left( {a - b} \right) = \cos a.\cos b - \sin a.\sin b + \sin a.\sin b + \cos a.\cos b = 2\cos a.\cos b\\\cos \left( {a + b} \right) - \cos \left( {a - b} \right) = \cos a.\cos b - \sin a.\sin b - \sin a.\sin b - \cos a.\cos b =  - 2\sin a.\sin b\\\sin \left( {a + b} \right) + \sin \left( {a - b} \right) = \sin a.\cos b + \cos a.\sin b + \sin a.\cos b - \cos a.\sin b = 2\sin a.\cos b\end{array}\)

28 tháng 10 2021

\(=\dfrac{b\left(b-c\right)-a\left(a-c\right)}{ab\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\dfrac{b^2-bc-a^2+ac}{ab\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\dfrac{-\left(a-b\right)\left(a+b\right)+c\left(a-b\right)}{ab\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{-a-b+c}{ab\left(a-c\right)\left(b-c\right)}\)

28 tháng 10 2021

\(=\dfrac{1}{a\left(a-b\right)\left(a-c\right)}-\dfrac{1}{b\left(a-b\right)\left(b-c\right)}\)

\(=\dfrac{b^2-cb-a^2+ac}{ab\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{\left(b-a\right)\left(b+a\right)-c\left(b-a\right)}{ab\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{-\left(b+a-c\right)}{ab\left(a-c\right)\left(b-c\right)}\)

28 tháng 10 2021

\(\dfrac{1}{a\left(a-b\right)\left(a-c\right)}+\dfrac{1}{b\left(b-a\right)\left(b-c\right)}\)

\(=\dfrac{1}{a\left(a-b\right)\left(a-c\right)}-\dfrac{1}{b\left(a-b\right)\left(b-c\right)}\)

\(=\dfrac{b\left(b-c\right)-a\left(a-c\right)}{ab\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{b^2-bc-a^2+ac}{ab\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\dfrac{-\left(a-b\right)\left(a+b\right)+c\left(a-b\right)}{ab\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(-a-b+c\right)}{ab\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=-\dfrac{a+b-c}{ab\left(b-c\right)\left(a-c\right)}\)