Rút gọn biểu thức
A= 1+1/2+1/22+1/23+...+1/22012
Giúp mình nha, mk đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Chứng tỏ rằng B = 1/22 + 1/32 + 1/42 + 1/52 + 1/62 + 1/72 +1/82 < 1
b.Cho S = 3/1.4 + 3/4.7 + 3/7.10 +......+3/40.43 + 3/43.46 hãy chứng tỏ rằng S < 1
Xin lỗi mọi người mình tính đặt câu hỏi nhưng ấn nhầm phần trả lời ạ!
\(\left(3x-1\right)^2-9x\left(x+1\right)\)
\(=9x^2-6x+1-9x^2-9x\)
=-15x+1
a)
\(A=\left(-a-b+c\right)-\left(-a-b-c\right)\)
\(A=-a-b+c-\left(-a\right)+b+c\)
\(A=-a+\left(-b\right)+c+a+b+c\)
\(A=\left[\left(-a\right)+a\right]+\left[\left(-b\right)+b\right]+\left(c+c\right)\)
\(A=0+0+2c\)
\(A=2c\)
____________________________________________________________________________
b)
Cách 1 : \(A=\left(-1-\left(-1\right)+\left(-2\right)\right)-\left(1-\left(-1\right)-\left(-2\right)\right)\)
\(A=-1-\left(-1\right)+\left(-2\right)-\left(-1\right)+\left(-1\right)+\left(-2\right)\)
\(A=-1+1+\left(-2\right)+1+\left(-1\right)+\left(-2\right)\)
\(A=\left[\left(-1\right)+1+1+\left(-1\right)\right]+\left[\left(-2\right)+\left(-2\right)\right]\)
\(A=0+\left(-4\right)=\left(-4\right)\)
Cách 2 : Từ ý a suy ra :
\(A=\left(-2\right)\cdot2=\left(-4\right)\)
Sửa đề: \(C=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(a,C=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\left(a>0;a\ne1;a\ne4\right)\\ C=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\\ b,C\ge\dfrac{1}{6}\Leftrightarrow\dfrac{\sqrt{a}-2}{3\sqrt{a}}-\dfrac{1}{6}\ge0\Leftrightarrow\dfrac{\sqrt{a}-4}{6\sqrt{a}}\ge0\\ \Leftrightarrow\sqrt{a}-4\ge0\left(6\sqrt{a}>0\right)\\ \Leftrightarrow a\ge16\)
\(\frac{1^2}{2^2-1}\cdot\frac{3^2}{4^2-1}\cdot\cdot\cdot\cdot\cdot\frac{n^2}{\left(n+1\right)^2-1}\)
\(=\frac{1\cdot1}{1\cdot3}\cdot\frac{3\cdot3}{3\cdot5}\cdot\cdot\cdot\cdot\cdot\frac{n\cdot n}{n\left(n+2\right)}\)
\(=\frac{\left(1\cdot3\cdot\cdot\cdot\cdot\cdot n\right)\left(1\cdot3\cdot\cdot\cdot\cdot\cdot n\right)}{\left(1\cdot3\cdot\cdot\cdot\cdot\cdot n\right)[3\cdot5\cdot\cdot\cdot\cdot\cdot(n+2)]}\)
\(=\frac{1}{n+2}\)
\(\left|2x-\frac{1}{2}\right|+1=3x\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=3x-1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}=3x-1\\2x-\frac{1}{2}=1-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1+\frac{1}{2}\\2x+3x=1+\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{1}{2}\\5x=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{10}\end{cases}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\\ 2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}\\ 2A-A=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2011}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\right)\\ A=2-\dfrac{1}{2^{2012}}\)