Tính giá trị của biểu thức :
a) \(x+\left(-10\right)\), biết \(x=-28\)
b) \(\left(-267\right)+y\), biết \(y=-33\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính giá trị biểu thức:
a) x + (– 10), biết x = – 28
Với x = -28 thì x + (– 10) = -28 + (– 10) = -38
b) (– 267) + y, biết y = – 33
Với y = -33 thì (– 267) + (-33) = - 300
a) Ta có: x + (-10)
Thay x = -28 ta được
(-28) + (-10) = -38
b) Ta có: (-267) + y
Thay y = -33 ta được
(-267) + (-33) = -300
a) Ta có: x + (-10)
Thay x = -28 ta được
(-28) + (-10) = -38
b) Ta có: (-267) + y
Thay y = -33 ta được
(-267) + (-33) = -300
\(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a\)
\(\Rightarrow x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+\left(1+x^2\right)\left(1+y^2\right)=a^2\)
\(\Rightarrow x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2.x\sqrt{1+y^2}.y\sqrt{1+x^2}+1=a^2\)
\(\Rightarrow\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2+1=a^2\)
\(\Rightarrow E^2+1=a^2\)
\(\Rightarrow E=\pm\sqrt{a^2-1}\)
\(E^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2xy\sqrt{\left(y^2+1\right)\left(x^2+1\right)}\)
\(=2\left(xy\right)^2+x^2+y^2+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}\)
\(a^2=\left(xy\right)^2+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+\left(x^2+1\right)\left(y^2+1\right)\)
\(=2\left(xy\right)^2+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+x^2+y^2+1\)
\(\Rightarrow E^2=a^2-1\Rightarrow E=\sqrt{a^2-1}\)
\(E=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
\(\Leftrightarrow E^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)
\(=2x^2y^2+x^2+y^2+2xy\left(a-xy\right)\)
\(=2x^2y^2+x^2+y^2+2xya-2x^2y^2\)
\(=x^2+y^2+2xya\)
\(=\left(2xy\right)2+a=a^2+a=E^2\)
\(E=\sqrt{a^2+a}\)
Ta có :
\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)
Do x + y + z = 0 => x+y = -z ; y+z = -x ; z+x = -y
\(\Rightarrow A=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{\left(-1\right).xyz}{xyz}=-1\)
\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{a\left(-x-y\right)+b\left(-x-y\right)-a\left(b-x\right)+y\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{-ax-ay-bx-by-ab+ax+by-xy}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{-ay-bx-ab-xy}{abxy\left(xy+ay+ab+by\right)}\)
\(=\dfrac{-xy+ay+ab+by}{abxy\left(xy+ay+ab+by\right)}=\dfrac{-1}{abxy}\)
Với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)
\(\Rightarrow A=\dfrac{-1}{\dfrac{1}{3}.\left(-2\right).\dfrac{3}{2}.1}=-1\)
làm a) thui nhé,b) bn tu lam
a) P = (x+y +x-y)(x+y -x+y) = 4xy = 1
xong rui do,toan là vay, noi it,hiu nhiu
a) x+(−10)x+(−10), biết x=−28x=−28
(-28)+(-10)=(-38)
b) (−267)+y, biết y=−33
(-267)+(-33)=(-300)
a) \(-28 + (-10 ) = -( 28 + 10 ) = -38\)
b) \(-267+\left(-33\right)=-\left(267+33\right)=-300\)