K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

2A=2\(\left(2^0+2^1+2^2+...+2^{2010}\right)\)

2A=\(2^1+2^2+2^3+...+2^{2011}\)

2A-A=\(2^{2011}-2^0\)

Vậy A=\(2^{2011}-2\)

17 tháng 5 2017

\(A=2^0+2 ^1+...+2^{2010}\\ \Rightarrow2.A=2+2^2+....+2^{2011}\\ \Rightarrow2.A-A=2^{2011}-1\\ \Rightarrow A=2^{2011}-1\)

DD
10 tháng 12 2021

\(A=2^0+2^1+2^2+...+2^{2010}\)

\(2A=2^1+2^2+2^3+...+2^{2021}\)

\(2A-A=\left(2^1+2^2+2^3+...+2^{2021}\right)-\left(2^0+2^1+2^2+...+2^{2020}\right)\)

\(A=2^{2021}-1\)

27 tháng 9 2019

\(A=2^0+2^1+2^2+2^3+...+2^{2010}\)

\(A=1+2+2^2+2^3+...+2^{2010}\)

\(2A=2+2^2+2^3+...+2^{2011}\)

\(2A-A=\left[2+2^2+2^3+...+2^{2011}\right]-\left[1+2+2^2+2^3+...+2^{2010}\right]\)

\(A=2^{2011}-1\)

Mà \(B=2^{2011}-1\)

=> A = B

27 tháng 9 2019

Ta có: A=\(2^0+2^1+2^2+2^3+...+2^{2010}\)

          2A=\(2^1+2^2+2^3+2^4+...+2^{2011}\)

     2A-A hay A=\(2^{2011}-2^0\)

                       =\(2^{2011}-1\)

Vì \(2^{2011}-1=2^{2011}-1\)

\(\Rightarrow\)A=B

Hok tốt nha!!!

8 tháng 12 2016

a) A = (7-9)3+ (-5)7 :(-5)+20100=(-2)3 + (-5)7-5 +1

       =-8 +(-5)2 +1 = -8 +25 +1=18

B) b=(2.(-2)2 +1:(-3)2) +9.7 -(-2) =2.4 +1/9 + 63 - 64 = 8 +1/9 -1 =64/9

CHÚC BN GIỎI NHÉ <3 

21 tháng 10

216,729,

 

 

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

13 tháng 2 2016

Câu 1

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{99}=\frac{49}{100}\) 

cho mình nha bạn

13 tháng 2 2016

ủng hộ mình nha

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

10 tháng 6 2018

(1981 x 1982 - 990) : (1980 x 1982 + 992)

=(1980 x 1982+1982 -990) : (1980 x 1982 +992)

=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)

=1

16 tháng 7 2019

B=[(45.79+45.21)]:90-5^2]:5+2^3                                  B=[(45.79+45.21):90-25]:5+8                                      B=[(45.(79+21):65]:13                                                  B=[(45.100):65]:13                                                        B=[4500:65]:13                                                           B=4500:65:13