√19+6√2
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{12}{17}+\left(\dfrac{-6}{19}\right)+\dfrac{5}{17}+\left(\dfrac{-13}{19}\right)-\dfrac{1}{2}=\left(\dfrac{12}{17}+\dfrac{5}{17}\right)+\left(\dfrac{-6}{19}+\dfrac{-13}{19}\right)-\dfrac{1}{2}=1+\left(-1\right)-\dfrac{1}{2}=0-\dfrac{1}{2}=-\dfrac{1}{2}\)
a) \(\dfrac{2}{5}\cdot x=\dfrac{1}{2}+\dfrac{6}{8}\)
\(\dfrac{2}{5}\cdot x=\dfrac{5}{4}\)
\(x=\dfrac{5}{4}\div\dfrac{2}{5}\)
\(x=\dfrac{25}{8}\)
b) \(\dfrac{20}{7}-x=\dfrac{19}{7}\div\dfrac{3}{2}\)
\(\dfrac{20}{7}-x=\dfrac{19}{7}\cdot\dfrac{2}{3}\)
\(\dfrac{20}{7}-x=\dfrac{38}{21}\)
\(x=\dfrac{20}{7}-\dfrac{28}{21}\)
\(x=\dfrac{22}{21}\)
Câu a,b hình như nhầm đề mình tự sửa nha ;-;
a, Ta có : \(\left(x^2-x-6\right)^2+\left(x-3\right)^2\)
\(=\left(x^2-3x+2x-6\right)^2+\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left(x+2\right)^2+\left(x-3\right)^2\)
\(=\left(x-3\right)^2\left(\left(x+2\right)^2+1\right)\)
b, Ta có : \(\left(x^2-x-20\right)^2+\left(x+4\right)^2\)
\(=\left(x^2+4x-5x-20\right)^2+\left(x+4\right)^2\)
\(=\left(x+4\right)^2\left(x-5\right)^2+\left(x+4\right)^2\)
\(=\left(x+4\right)^2\left(\left(x-5\right)^2+1\right)\)
\(\dfrac{6^x}{3^3\cdot4}=2\)
=>6^x=2*4*3^3=8*3^3=6^3
=>x=3
\(\sqrt{19+6\sqrt{2}}=\sqrt{\left(\sqrt{18}+1\right)^2}=\sqrt{18}+1\)
\(\sqrt{19+6\sqrt{2}}=3\sqrt{2}+1\)