Cho x, y, z là số dương thỏa: xyz=1.
CMR: \(\dfrac{x^2}{y+1}+\dfrac{y^2}{z+1}+\dfrac{z^2}{x+1}\ge1,5\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy, ta có:
\(VT\ge3\sqrt[3]{\dfrac{x^2.y^2.z^2}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}=3\sqrt[3]{\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}}\)
Ta có: xyz=1 và x,y,z >0
\(\Rightarrow x\le1\Rightarrow x+1\le2\Rightarrow\dfrac{1}{x+1}\ge\dfrac{1}{2}\)
Tương tự \(\dfrac{1}{y+1}\ge\dfrac{1}{2}\)
\(\dfrac{1}{z+1}\ge\dfrac{1}{2}\)
\(\Rightarrow VT\ge3\sqrt[3]{\dfrac{1}{x+1}.\dfrac{1}{y+1}.\dfrac{1}{z+1}}=\dfrac{3}{2}\)
Đẳng thức xảy ra khi x=y=z=1
Bài 1:
\((x,y,z)=(\frac{2a^2}{bc}; \frac{2b^2}{ca}; \frac{2c^2}{ab})\) (\(a,b,c>0\) )
Khi đó:
\(\text{VT}=\frac{\frac{4a^4}{b^2c^2}}{\frac{4a^4}{b^2c^2}+\frac{4a^2}{bc}+1}+\frac{\frac{4b^4}{c^2a^2}}{\frac{4b^4}{c^2a^2}+\frac{4b^2}{ca}+4}+\frac{\frac{4c^4}{a^2b^2}}{\frac{4c^4}{a^2b^2}+\frac{4c^2}{ab}+4}\)
\(=\frac{a^4}{a^4+a^2bc+b^2c^2}+\frac{b^4}{b^4+b^2ac+a^2c^2}+\frac{c^4}{c^4+c^2ab+a^2b^2}\)
\(\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+a^2bc+b^2ac+c^2ab+(a^2b^2+b^2c^2+c^2a^2)}\)
(Áp dụng BĐT Cauchy_Schwarz)
Theo BĐT Cauchy dễ thấy:
\(a^2b^2+b^2c^2+c^2a^2\geq a^2bc+b^2ca+c^2ab\)
\(\Rightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{a^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)}=\frac{(a^2+b^2+c^2)^2}{(a^2+b^2+c^2)^2}=1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=2$
Bài 2:
Đặt \((x,y,z)=\left(\frac{a}{b};\frac{b}{c}; \frac{c}{a}\right)\)
Ta có:
\(\text{VT}=\left(\frac{a}{b}+\frac{c}{b}-1\right)\left(\frac{b}{c}+\frac{a}{c}-1\right)\left(\frac{c}{a}+\frac{b}{a}-1\right)\)
\(=\frac{(a+c-b)(b+a-c)(c+b-a)}{abc}\)
Áp dụng BĐT Cauchy:
\((a+c-b)(b+a-c)\leq \left(\frac{a+c-b+b+a-c}{2}\right)^2=a^2\)
\((b+a-c)(c+b-a)\leq \left(\frac{b+a-c+c+b-a}{2}\right)^2=b^2\)
\((a+c-b)(c+b-a)\leq \left(\frac{a+c-b+c+b-a}{2}\right)^2=c^2\)
Nhân theo vế:
\(\Rightarrow [(a+c-b)(b+a-c)(c+b-a)]^2\leq (abc)^2\)
\(\Rightarrow (a+c-b)(b+a-c)(c+b-a)\leq abc\)
\(\Rightarrow \text{VT}\leq 1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$
\(x,y,z>0\)
Áp dụng BĐT Caushy cho 3 số ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)
\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)
\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)
Áp dụng BĐT Caushy-Schwarz ta có:
\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)
\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)
\(P=0\Leftrightarrow x=y=z=1\)
Vậy \(P_{min}=0\)
Bài 1:
Ta có: \(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{ab+bc+ca+a^2}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\dfrac{b}{\sqrt{1+b^2}}=\dfrac{b}{\sqrt{ab+bc+ca+b^2}}=\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)
\(\dfrac{c}{\sqrt{1+c^2}}=\dfrac{c}{\sqrt{ab+bc+ca+c^2}}=\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
Vậy \(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
Áp dụng BĐT AM-GM ta có:
\(P\le a\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+b\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)+c\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)=\dfrac{9}{4}\)
Bài 2:
Ta có:
\(\dfrac{1+\sqrt{1+x^2}}{x}=\dfrac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\dfrac{2+\dfrac{4+\left(1+x^2\right)}{2}}{2x}=\dfrac{9+x^2}{4x}\)
Tương tự ta cũng có:
\(\dfrac{1+\sqrt{1+y^2}}{y}\le\dfrac{9+y^2}{4y};\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+z^2}{4z}\)
Cộng theo vế 3 BĐT trên ta có:
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+x^2}{4x}+\dfrac{9+y^2}{4y}+\dfrac{9+z^2}{4z}\)
\(=\dfrac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\dfrac{9\cdot\dfrac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=xyz\)
Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)
Bài 1:
\(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Sau đó côsi
Tự làm nốt nhé, ra 3/2 đấy. Em học lớp 8 nên cách giải chỉ thế thôi. Câu 2 em chưa làm được
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\dfrac{x^2}{y+1}+\dfrac{y+1}{4}\ge2\sqrt{\dfrac{x^2}{4}}=x\)
Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{y^2}{z+1}+\dfrac{z+1}{4}\ge y\\\dfrac{z^2}{x+1}+\dfrac{x+1}{4}\ge z\end{matrix}\right.\)
\(\Rightarrow\dfrac{x^2}{y+1}+\dfrac{y^2}{z+1}+\dfrac{z^2}{x+1}+\dfrac{x+y+z}{4}+\dfrac{3}{4}\ge x+y+z\)
\(\Rightarrow\dfrac{x^2}{y+1}+\dfrac{y^2}{z+1}+\dfrac{z^2}{x+1}\ge\dfrac{3\left(x+y+z\right)}{4}-\dfrac{3}{4}\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}=3\)
\(\Rightarrow\dfrac{3\left(x+y+z\right)}{4}\ge\dfrac{9}{4}\)
\(\Rightarrow\dfrac{3\left(x+y+z\right)}{4}-\dfrac{3}{4}\ge\dfrac{3}{2}=1,5\) (2)
Từ (1) và (2)
\(\Rightarrow\dfrac{x^2}{y+1}+\dfrac{y^2}{z+1}+\dfrac{z^2}{x+1}\ge1,5\) (đpcm )
Dấu " = " xảy ra khi \(x=y=z=1\)
Sửa: =>\(\dfrac{x^2}{y+1}+\dfrac{y^2}{z+1}+\dfrac{z^2}{x+1}\ge\dfrac{3\left(x+y+z\right)}{4}-\dfrac{3}{4}\left(1\right)\)