cho A = 3+3^2+3^3 +..........+3^100
tìm số tự nhiên n biết
2A+3=3n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ( 3 n - 1 ) 2 - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).
Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) Ta có: 100 - ( 7 n + 3 ) 2 =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.
A = 3 + 3^2 + 3^3 +...+ 3^99
3A = 32 + 33 + 34 + ... + 3100
3A - A = ( 32 + 33 + 34 + ... + 3100 ) - ( 3 + 3^2 + 3^3 +...+ 3^99 )
2A = 3100 - 3
\(\Rightarrow\)2A = 3100 - 3 + 3 = 3100
Vậy n = 100
A= 3+ 3^2 + 3^3 +...+3^99
3A= 3^2 + 3^3 + 3^4 +...+ 3^100
2A=3A-A=(3^2+3^3+3^4+...+3^100) - (3+3^2+3^3+...+3^99)
2A=3^100 - 3
2A + 3=3n= 3^100 - 3 + 3 = 3^100
n=3n:3=3^100:3
n=3^100-1=3^99
a)
\(n+3⋮n-1\Leftrightarrow\left(n-1\right)+4⋮n-1\)
\(\Rightarrow4⋮n-1\) (vì n-1 chia hết cho n-1)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n-1=1\Rightarrow n=2\)
\(n-1=2\Rightarrow n=3\)
\(n-1=4\Rightarrow n=5\)
Vậy \(n\in\left\{2;3;5\right\}\)
19991999.1998-19981998.1999
= 10001.1999.1998 - 10001.1998.1999
= 0
A = 3100 + 3
\(A=3+3^2+3^3+...+3^{100}\)
\(3A=3^2+3^3+...+3^{100}+3^{101}\)
\(3A-A=3^2+3^3+...+3^{100}+3^{101}-\left(3+3^2+3^3+...+3^{100}\right)\)
\(2A=3^{101}-3\)
\(2A+3=3n\)
\(\Rightarrow3^{101}-3+3=3n\)
\(\Rightarrow3^{101}=3n\)
\(\Rightarrow n=3^{100}\)