cho A = 3+3^2+3^3 +..........+3^100
tìm số tự nhiên n biết
2A+3=3A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(S=a^3+b^3+c^3+3a^2+3b^2+3c^2=\)
\(S=a^3-a+b^3-b+c^3-c+3a^2-3a+3b^2-3b+3c^2-3c+4\cdot\left(a+b+c\right)\)
Ta có: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)là tích của 3 số tự nhiên liên tiếp nên chia hết cho 6.
Tương tự b3 - b và c3 - c cũng chia hết cho 6. (1).
Mặt khác, \(3a^2-3a=3a\left(a-1\right)\)chia hết cho 3 mà a(a-1) là tích 2 số tự nhiên liên tiếp => a(a-1) chia hết cho 2. Do đó 3a(a-1) chia hết cho 6 => 3a2 - 3a chia hết cho 6. Tương tự, 3b2 - 3b; 3c2 - 3c cũng chia hết cho 6. (2)
Theo đề bài thì a+b+c chia hết cho 3 nên 4*(a+b+c) chia hết cho 6 (3)
Từ (1); (2); (3) suy ra S là tổng các số chia hết cho 6 nên S chia hết cho 6. đpcm
Ta có: \(S=a^3+b^3+c^3+3a^2+3b^2+3c^2\)
\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(3a^2-3a\right)+\left(3b^2-3b\right)+\left(3c^2-3c\right)+4\left(a+b+c\right)\)
\(=a\left(a+1\right)\left(a-1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)+3a\left(a-1\right)+3b\left(b-1\right)+3c\left(c-1\right)+4\left(a+b+c\right)\)
Ta thấy: \(\hept{\begin{cases}a\left(a-1\right)\left(a+1\right)⋮6\\b\left(b-1\right)\left(b+1\right)⋮6\\c\left(c-1\right)\left(c+1\right)⋮6\end{cases}}\)(1)
\(\hept{\begin{cases}3a\left(a-1\right)⋮6\\3b\left(b-1\right)⋮6\\3c\left(c-1\right)⋮6\end{cases}}\)(2)
\(4\left(a+b+c\right)⋮6\)(3)
Từ (1),(2),(3) ta suy ra \(S⋮6\)
A=3+3^2+3^3+...+3^100
=>3A=3^2+3^3+3^4+...+3^101
=>3A-A=2A=3^101-3
mà 2A+3=3^n
=>3^101-3+3=3^n
=>3^n=3^101
=>n=101