Cho a+b=2 tìm gtnn của A=a2+b2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
\(\left(a+2\right)\left(a-3\right)\le0\)\(\Leftrightarrow a^2-6\le a\)
Tương tự: \(b^2-6\le b\) ; \(c^2-6\le c\)
Cộng vế với vế:
\(M\ge a^2+b^2+c^2-18=4\)
Dấu '=" xảy ra khi \(\left(a;b;c\right)=\left(3;3-2\right)\) và hoán vị
\(A=a^2+\dfrac{1}{16a^2}+b^2+\dfrac{1}{16b^2}+\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)
\(A\ge2\sqrt{\dfrac{a^2}{16a^2}}+2\sqrt{\dfrac{b^2}{16b^2}}+\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)
\(A\ge1+\dfrac{15}{32}\left(\dfrac{4}{a+b}\right)^2\ge1+\dfrac{15}{32}.4\)
Áp dụng bất đẳng thức cosi ta có:
`a^2+b^2>=2ab`
`b^2+c^2>=2bc`
`c^2+a^2>=2ca`
`=>2(a^2+b^2+c^2)>=2ab+2bc+2ca`
`=>3(a^2+b^2+c^2)>=a^2+b^2+c^2+2ab+2bc+2ca`
`=>3A>=(a+b)^2=1`
`=>A>=1/3`
Dấu "=" xảy ra khi `a=b=c=1/3`
a) Áp dụng Cauchy Schwars ta có:
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi: x=y=1
Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)
Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)
Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)
Cộng vế:
\(P\ge\dfrac{a+b+c}{3}=673\)
Dấu "=" xảy ra khi \(a=b=c=673\)
Mk ms tìm được GTNN thôi!
Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)
Áp dụng BĐT Cô-si cho 2 số ko âm a2 và b2 ta có:
a2 + b2 \(\ge\) 2ab
\(\Leftrightarrow\) 1 \(\ge\) 2ab
\(\Leftrightarrow\) 1 - 2ab \(\ge\) 0
\(\Leftrightarrow\) 1 - ab \(\ge\) ab
\(\Rightarrow\) A \(\ge\) ab(a + b)
Dấu "=" xảy ra khi và chỉ khi a = b = \(\sqrt{0,5}\)
\(\Rightarrow\) A \(\ge\) 0,5 . 2\(\sqrt{0,5}\) = \(\sqrt{0,5}\)
Vậy ...
Chúc bn học tốt!
\(a^2+b^2=1\Rightarrow\left\{{}\begin{matrix}0\le a\le1\\0\le b\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3\le a^2\\b^3\le b^2\end{matrix}\right.\)
\(\Rightarrow a^3+b^3\le a^2+b^2=1\)
\(A_{max}=1\) khi \(\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)
\(a^3+a^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}a^2\)
\(b^3+b^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}b^2\)
Cộng vế:
\(2\left(a^3+b^3\right)+\dfrac{\sqrt{2}}{2}\ge\dfrac{3}{\sqrt{2}}\left(a^2+b^2\right)=\dfrac{3\sqrt{2}}{2}\)
\(\Rightarrow a^3+b^3\ge\dfrac{\sqrt{2}}{2}\)
\(A_{min}=\dfrac{\sqrt{2}}{2}\) khi \(a=b=\dfrac{\sqrt{2}}{2}\)
\(A=\dfrac{1}{a}+\dfrac{1}{b}-\left(\dfrac{a}{b}+\dfrac{b}{a}-2\right)=\dfrac{1-a+b}{b}+\dfrac{1-b+a}{a}\)
Vì \(a^2+b^2=1\) và \(a,b>0\Leftrightarrow0< a< 1;0< b< 1\Leftrightarrow1+a-b>0;1-b+a>0\)
\(\Leftrightarrow A\ge2\sqrt{\dfrac{\left(1-a+b\right)\left(1-b+a\right)}{ab}}=2\sqrt{\dfrac{1-a^2-b^2+2ab}{ab}}=2\sqrt{2}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=1\\\dfrac{1-a+b}{b}=\dfrac{1-b+a}{a}\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{\sqrt{2}}\)
\(A=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{4}{2}=2\)
Dấu ''='' xảy ra khi a = b = 1
Vậy GTNN của A bằng 2 tại a = b = 1
\(A=a^2+b^2\)
\(=\left(a+b\right)^2-2ab\)
\(=4-2ab\)
Giả sử \(a;b\ge0\)
Áp dụng bất đẳng thức Cô-si cho hai số a;b dương thì ta có:
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\left(\frac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow1\ge ab\)
\(\Rightarrow-2ab\ge-2\)
\(\Leftrightarrow4-2ab\ge2\)
\(\Leftrightarrow A\ge2\)
Vậy \(MinA=2\)
Dấu '' = '' xảy ra khi: \(a=b=1\)