Nghiệm nguyên nhỏ nhất của bất phương trình \(\sqrt{x}>2\) là x= ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x}>2\) (ĐKXĐ: \(x\ge0\))
\(\Leftrightarrow x>4\). Vì x là số nguyên nhỏ nhất nên x = 5 thoả mãn bất phương trình.
pt<=>\(\sqrt{x^2-16x+64-58}\)=\(\sqrt{\left(x-8\right)^2+58}\)
=> gtnn= \(\sqrt{58}\)
khi x=8
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Chọn A
Điều kiện : x ≠ -2
TH1 : Nếu x< -2 ( vô lí)
TH2: Nếu -2, x< 1; bpt trở thành: 1-x> x+2
Hay x< -1/2
Kết hợp với điều kiện,ta có: -2< x< -1/2
TH3: Nếu x ≥ 1, bất phương trình trở thành: x-1> x+2 (vô lí)
Vậy bpt có tập nghiệm S= (-2; -1/2)
Nghiệm nguyên lớn nhất của bpt là -1
Điều kiện : \(x\ge-1\)
Bình phương hai vế : \(x+1< \left(x+3\right)^2\Leftrightarrow x^2+6x+9>x+1\Leftrightarrow x^2+5x+8>0\)
Mà \(x^2+5x+8=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\) với mọi x
Vậy : nghiệm nguyên nhỏ nhỏ nhất của x bằng -1
\(\sqrt{x+1}< x+3\)
<=> \(\begin{cases}x+1\ge0\\x+3\ge0\\x+1< x^2+6x+9\end{cases}\)
<=> \(\begin{cases}x\ge-1\\x^2+5x+8>0\end{cases}\)
<=> \(\begin{cases}x\ge-1\\x\in R\end{cases}\)
=> x>=-1
=> Nghiệm NN là -1
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
\(\sqrt{4x-1}\ge4\)
<=> \(\begin{cases}4x-1\ge0\\4x-1\ge16\end{cases}\)
<=>x>=1/4=> ngiệm nguyên nhỏ nhất là L: 1
Chọn A
Điều kiện: -1< x< 1.
Ta có:
Bất phương trình đã cho tương đương:
log3( 1-x2) ≤ - log3(1-x) hay log3( 1-x2) + log3( 1-x)≤ 0.
=> log3[ ( 1-x2).( 1-x)]
=> (1-x2)( 1-x)≤ 1 ó 1-x-x2+ x3 ≤ 1
ó x3-x2- x≤ 0
ó x
Kết hợp với điều kiện; suy ra x=0 là nghiệm nguyên nhỏ nhất của bất phương trình..
Chọn A.
\(\sqrt{x}\)>2 <=> x>22 <=>x>4
Vậy nghiêm nhỏ nhất là 5