Chứng tỏ rằng :
a) \(0,\left(37\right)+0,\left(62\right)=1\)
b) \(0,\left(33\right).3=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 0,(37)+0,(62)=1
ta có : 0,(37)=37/99
0,(62)=62/99
=> 0,(37)+0,(62)=37/99+62/99=99/99=1
Vậy 0,(37)+0,(62)=1
b, 0,(33).3=1
ta có : 0,(33)=33/99=1/3
=> 0,(33).3=1/3.3=1
Vậy 0,(33).3=1
0,(37)+0,(62)=0,(99)
Theo quy ước làm tròn số ta dược :
0,\left(99\right)\approx10,(99)≈1 (đpcm)
b) Làm tương tự câu a) ta có :
0,\left(33\right).3=0,\left(99\right)\approx10,(33).3=0,(99)≈1 (đpcm)
a) \(\left[0,\left(37\right)+0,\left(62\right)\right]\cdot x=10\)
=> \(\left[\frac{37}{99}+\frac{62}{99}\right]\cdot x=10\)
=> \(1\cdot x=10\Rightarrow x=10\)
b) \(\frac{0,\left(12\right)}{1,\left(6\right)}=\frac{\frac{12}{99}}{\frac{5}{3}}=\frac{12}{99}\cdot\frac{3}{5}=\frac{4}{55}\)
=> \(\frac{4}{55}=x:0,\left(4\right)\)
=> \(\frac{4}{55}=x:\frac{4}{9}\)
=> \(x:\frac{4}{9}=\frac{4}{55}\)
=> \(x=\frac{4}{55}\cdot\frac{4}{9}=\frac{16}{495}\)
Q(2)=a.22+b.2+c=a.4+b.2+c
Q(-1)=a.(-1)2+b.(-1)+c=a-b+c
Ta có Q(2)+Q(-1)=4a+2b+c+a-b+c=5a+b+2c=0
Như vậy Q(2) và Q(-1) là 2 số đối nhau
=> Tích của chúng luôn nhỏ hơn hoặc bằng 0 ( Bằng 0 khi cả 2 số đều bằng 0)
b) Q(x)=0 với mọi x
=>Q(0)=a.02+b.0+c=0
=>0+0+c=0
=>c=0
Q(1)=a.12+b.1+c=a+b+c=0
Theo câu a, ta có Q(-1)=a-b+c=0 ( vì giả thiết cho đa thức =0 với mọi x)
=>Q(1)-Q(-1)=a+b+c-(a-b+c)=a+b+c-a+b-c=0
=>2b=0
=>b=0
Thay b=0 và c=0 vào đa thức Q(1) ta có a+0+0=0
=>a=0
Vậy a=b=c=0
0,(37) + 0,(62) =
\(\frac{37}{99}+\frac{62}{99}=\frac{99}{99}\)
\(\frac{99}{99}=1\)
a) Vì \(0,\left(3\right)=\dfrac{3-0}{9}=\dfrac{3}{9}=\dfrac{1}{3}\) và \(-0,4\left(2\right)=-\dfrac{42-4}{90}=-\dfrac{38}{90}=-\dfrac{19}{45}\) nên:
\(0,\left(3\right)+3\dfrac{1}{3}-0,4\left(2\right)=\dfrac{1}{3}+\dfrac{10}{3}-\dfrac{19}{45}=\dfrac{11}{3}-\dfrac{49}{45}\)
\(=\dfrac{165-19}{45}=\dfrac{146}{45}\)
b) Vì \(0,\left(5\right)=\dfrac{5-0}{9}=\dfrac{5}{9}\) và \(0,\left(2\right)=\dfrac{2-0}{9}=\dfrac{2}{9}\) nên:
\(\left[0,\left(5\right).0,\left(2\right)\right]:\left(3\dfrac{1}{3}:\dfrac{33}{25}\right)=\left(\dfrac{5}{9}.\dfrac{2}{9}\right):\left(\dfrac{10}{3}.\dfrac{25}{33}\right)=\dfrac{10}{81}:\left(\dfrac{110.25}{33}\right)\)
\(=\dfrac{10}{81}.\dfrac{33}{110.25}=\dfrac{3}{81.25}=\dfrac{1}{27.25}=\dfrac{1}{675}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Tượng tự ta có \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)
\(\Rightarrow VT+\frac{3}{4}+\frac{a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow VT\ge\frac{a+b+c}{2}-\frac{3}{4}\)(1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}=3\)
\(\Rightarrow\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{4}\)(2)
Từ (1) và (2)
\(\Rightarrow VT\ge\frac{3}{4}\)( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
a) Ta có :
\(0,\left(27\right)+0,\left(72\right)==\dfrac{27}{99}+\dfrac{72}{99}=\dfrac{99}{99}=1\)
\(\Rightarrow0,\left(27\right)+0,\left(72\right)=1\rightarrowđpcm\)
b) Ta có :
\(0,\left(22\right).\dfrac{9}{2}=\dfrac{2}{9}.\dfrac{9}{2}=\dfrac{18}{18}=1\)
\(\Rightarrow0,22.\dfrac{9}{2}=1\rightarrowđpcm\)
c) Ta có :
\(\left[0,\left(11\right).9\right]^{2003}=\left[\dfrac{1}{9}.9\right]^{2003}=\left[\dfrac{9}{9}\right]^{2003}=1^{2003}=1\)
\(\Rightarrow\left[0,\left(11\right).9\right]^{2003}=1\rightarrowđpcm\)
\(3=a+b+c\ge3\sqrt[3]{abc}\)\(\Leftrightarrow\)\(abc\le1\)
\(VT=\frac{a^3\left(a+1\right)+b^3\left(b+1\right)+c^3\left(c+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=\frac{a^4+b^4+c^4+a^3+b^3+c^3}{a+b+c+ab+bc+ca+abc+1}\)
\(\ge\frac{\frac{\left(a^2+b^2+c^2\right)^2}{3}+\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}}{\frac{\left(a+b+c\right)^2}{3}+5}=\frac{\frac{\frac{\left(a+b+c\right)^4}{9}}{3}+\frac{\frac{\left(a+b+c\right)^4}{9}}{3}}{8}\)
\(=\frac{\frac{\frac{3^4}{9}}{3}}{4}=\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
a)ta có: 0, (37) + 0, (62) = 1
\(\Rightarrow\)\(\dfrac{37}{99}+\dfrac{62}{99}=1\left(ĐPCM\right)\)
b)ta có: 0, (33).3=1
\(\Rightarrow\)\(\dfrac{1}{3}.3=1\left(ĐPCM\right)\)
a) Ta có:
0, (37) = 0, (01) . 37 = \(\dfrac{1}{99}\) . 37 = \(\dfrac{37}{99}\)
0, (62) = 0, (01) . 62 = \(\dfrac{1}{99}\) . 62 = \(\dfrac{62}{99}\)
\(\Rightarrow\)0, (37) + 0, (62) = \(\dfrac{37}{99}\) + \(\dfrac{62}{99}\) = \(\dfrac{99}{99}\)= 1
Vậy 0, (37) + 0, (62) = 1 (ĐPCM)
b) Ta có:
0, (33) = 0, (01) . 33 = \(\dfrac{1}{99}\) . 33 = \(\dfrac{33}{99}\)
\(\Rightarrow\)0, (33) . 3 = \(\dfrac{33}{99}\) . 3 =\(\dfrac{99}{99}\) = 1
Vậy 0, (33) . 3 = 1 (ĐPCM)
tick mk nhé