Cho a,b > 0. Chứng minh rằng :
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng BĐT Cô si :
+ cho cặp số a,b ta được \(a+b\ge2\sqrt{ab}\left(1\right)\)
+ cho cặp số \(\dfrac{1}{a}+\dfrac{1}{b}\) ta được \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\left(2\right)\)
Nhân hai vế với \(\left(1\right),\left(2\right)\) ta được :\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.\dfrac{2}{\sqrt{ab}}=4\) (đpcm)
áp dụng BĐT cô si, ta có:
\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}\end{matrix}\right.\) nhân 2 vé với nhau, ta được:
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\sqrt{\dfrac{1}{ab}.ab}=4\left(đpcm\right)\)
Ta có:
\(4\le\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=\sqrt{ab}+\sqrt{a}+\sqrt{b}+1\le\dfrac{a+b}{2}+\dfrac{a+1}{2}+\dfrac{b+1}{2}+1\)
\(=a+b+2\)
\(\Leftrightarrow a+b\ge2\)
\(\dfrac{a^2}{b}+\dfrac{b^2}{a}\ge\dfrac{\left(a+b\right)^2}{a+b}=a+b\ge2\)
Dấu \(=\) xảy ra khi \(a=b=1\).
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
=> (a+b).\(\left(\dfrac{1}{b}+\dfrac{1}{b}\right)\ge\left(a+b\right).\dfrac{4}{a+b}=4\left(dpcm\right)\)
b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+b+c}\)
=>\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\left(a+b+c\right).\dfrac{9}{a+b+c}=9\left(dpcm\right)\)
Viết gọn lại, ta cần chứng minh:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\right)\)
\(\Leftrightarrow\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{a+b}{ab}}\right)=\sum\dfrac{4ab}{a+b}\)
Thật vậy, ta có:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum\left(2\sqrt{\left(a+b\right).\dfrac{1}{4}}\right)^2=\sum a+b\)
Vậy ta cần chứng minh:
\(\sum a+b\ge\sum\dfrac{4ab}{a+b}\Leftrightarrow\sum\left(a+b\right)^2\ge\sum4ab\Leftrightarrow\sum\left(a-b\right)^2\ge0\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c
Bài 1:
dự đoán dấu = sẽ là \(a^2=b^2=c^2=\dfrac{1}{2}\) nên cứ thế mà chém thôi .
Ta có: \(\left(a^2+1\right)\left(b^2+1\right)=\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\)
Bunyakovsky:\(\left(a^2+\dfrac{1}{2}\right)\left(\dfrac{1}{2}+b^2\right)+\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{3}{4}\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\)
\(VT=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\dfrac{3}{4}\left[\left(a+b\right)^2+1\right]\left(1+c^2\right)\ge\dfrac{3}{4}\left(a+b+c\right)^2\)(đpcm)
Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{2}}\)
P/s: còn 1 cách khác nữa đó là khai triển sau đó xài schur . Chi tiết trong tệp BĐT schur .pdf
a) Ta có: \(\left(a-b\right)^2\ge0\)
=>\(a^2+b^2-2ab\ge0\left(đpcm\right)\)
b) \(\left(a+b\right)^2\ge0\)
=> \(a^2+b^2+2ab\ge0\)
<=> \(a^2+b^2\ge-2ab\)
<=> \(\dfrac{a^2+b^2}{2}\ge ab\) (đpcm)
c) ta có: \(\left(a+1\right)^2=a^2+2a+1\)
\(a\left(a+2\right)=a^2+2a\)
Vậy từ 2 điều trên => \(a\left(a+2\right)< \left(a+1\right)^2\)
d) \(m^2+n^2+2\ge2\left(m+n\right)\) (*)
<=>m2 - 2m +1 +n2 - 2n +1 \(\ge0\)
<=> \(\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (1)
(1) đúng => (*) đúng
d) Bạn ấy giải rồi ,mình không giải nữa
e) Theo BĐT cauchy ta có: \(\dfrac{a^2+b^2}{2}\ge ab\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow\left(\dfrac{a}{b}+1\right)+\left(\dfrac{b}{a}+1\right)\ge4\)
\(\Leftrightarrow\dfrac{a+b}{b}+\dfrac{a+b}{a}\ge4\)
\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\ge4\) (đpcm)
Vậy..........
BDT
\(x+\dfrac{1}{x}=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2\ge2\)
nhân PP vào là ra
\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3+2+2+2=9\)
Theo BĐT Cauchy:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)
oaa cha cha :V mới đọc BĐT kiểu dạng này xong :P
Mình sẽ giải theo hai cách nhé :P
C1 : Áp dụng BĐT Cauchy - Schwarz dạng engel :
\(\dfrac{a^2_1+a^2_2+...+a^2_n}{b_1+b_2+...+b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\) Ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{\left(1+1\right)^2}{a+b}=\dfrac{4}{ab}\left(ĐPCM\right)\)
Đẳng thức xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}\)
C2 : Áp dụng BĐT Cauchy dạng \(a+b\ge2ab\) ta có :
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(=1+1+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2+2\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2+2\sqrt{1}=4\left(ĐPCM\right)\)
Đẳng thức xảy ra khi a = b.
vì a,b>0, áp dụng bđt cô si ta có
\(a+b\ge2\sqrt{ab}\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}\)
nhân với nhau ta có
\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)