K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2017

hộ vs ae ơi

Câu 1: Chứng minha) \(\dfrac{cosx+sin2x}{1+sinx-cos2x}=cotx\) b) \(\dfrac{1+sin3x-cos6x}{cos3x+sin6x}=tan3x\)Câu 2: Tínha) cos10.cos50.cos70b) sin10.sin50.sin70c) cos20.cos40.cos60.cos60d) sin20.sin40.sin60.sin80Câu 3: Trong mặt phẳng Oxy, cho tam giác ABC có điểm A(-4;2) và đường cao CH : x-y-1=0; trung điểm của BC là I(-2;3). Tìm tọa độ đỉnh BCâu 4: Trong mặt phẳng Oxy, cho tam giác ABC có điểm B(-1;2) và đường cao AH : x+y-2=0; trung điểm...
Đọc tiếp

Câu 1: Chứng minh

a) \(\dfrac{cosx+sin2x}{1+sinx-cos2x}=cotx\)

 

b) \(\dfrac{1+sin3x-cos6x}{cos3x+sin6x}=tan3x\)

Câu 2: Tính

a) cos10.cos50.cos70

b) sin10.sin50.sin70

c) cos20.cos40.cos60.cos60

d) sin20.sin40.sin60.sin80

Câu 3: Trong mặt phẳng Oxy, cho tam giác ABC có điểm A(-4;2) và đường cao CH : x-y-1=0; trung điểm của BC là I(-2;3). Tìm tọa độ đỉnh B

Câu 4: Trong mặt phẳng Oxy, cho tam giác ABC có điểm B(-1;2) và đường cao AH : x+y-2=0; trung điểm của AC là I(-2;1). Viết phương trình cạnh AC

Câu 5: Cho các số dương x,y thỏa mãn x+ y = \(\dfrac{1}{2}\). Tìm giá trị nhỏ nhất của

P=\(\dfrac{1}{x}+\dfrac{1}{y}\)

Câu 6: Cho số thực x thỏa mãn x>4. Tìm giá trị nhỏ nhất của \(Q=9x+\dfrac{1}{x-4}\)

Câu 7: Cho số dương x thỏa mãn 0 ≤ x ≤ 7. Tìm giá trị lớn nhất của \(Q=9x\left(7-x\right)\)

Câu 8: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 = 0 và đường thẳng d: x + y + 1 = 0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2.

Câu 9: Trong mặt phẳng Oxy cho điểm A(-3;4) và đường thẳng d: 3x + 4y + 18 = 0. Viết phương trình đường tròn tâm A và cắt đường thẳng d theo dây cung có độ dài bằng 24

Câu 10: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 =0 và đường thẳng d: x + y + 1=0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung AB sao cho tam giác ABI đều (I là tâm của (C))

 

Giúp em với ạ <3 Được câu nào hay câu đó :( tsau em thi rùi

1
20 tháng 5 2022

Câu 5. Cho x,y dương thỏa mãn \(x+y=\dfrac{1}{2}\).Tìm giá trị nhỏ nhất của 

\(P=\dfrac{1}{x}+\dfrac{1}{y}\)

Giải:

\(P=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{\dfrac{1}{2}}{xy}=\dfrac{2}{xy}\)

--> P nhỏ nhất khi \(xy\) lớn nhất

Ta có:

\(x^2+y^2\ge2xy\) ( BĐT AM-GM )

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow1\ge4xy\)

\(\Leftrightarrow xy\le\dfrac{1}{4}\)

\(\Rightarrow P\ge2:\dfrac{1}{4}=8\)

Vậy \(Min_P=8\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{4}\)

 

 

20 tháng 5 2022

ấy nhầm bài :v

NV
1 tháng 5 2019

\(sin^8x-cos^8x-4sin^6x+6sin^4x-4sin^2x\)

\(=sin^8x-\left(1-sin^2x\right)^4-4sin^6x+6sin^4x-4sin^2x\)

\(=sin^8x-\left(1-4sin^2x+6sin^4x-4sin^6x+sin^8x\right)-4sin^6x+6sin^4x-4sin^2x\)\(=-1\) (bạn chép nhầm đề)

b/ \(\frac{sin6x+sin2x+sin4x}{1+cos2x+cos4x}=\frac{2sin4x.cos2x+sin4x}{1+cos2x+2cos^22x-1}=\frac{sin4x\left(2cos2x+1\right)}{cos2x\left(2cos2x+1\right)}=\frac{sin4x}{cos2x}=\frac{2sin2x.cos2x}{cos2x}=2sin2x\)

c/ \(\frac{1+sin2x}{cosx+sinx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=\frac{sin^2x+cos^2x+2sinx.cosx}{cosx+sinx}-\left(1-tan^2\frac{x}{2}\right)cos^2\frac{x}{2}\)

\(=\frac{\left(sinx+cosx\right)^2}{sinx+cosx}-\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)=sinx+cosx-cosx=sinx\)

d/ \(cos4x+4cos2x+3=2cos^22x-1+4cos2x+3\)

\(=2\left(cos^22x+2cos2x+1\right)=2\left(cos2x+1\right)^2=2\left(2cos^2x-1+1\right)^2=8cos^4x\)

e/

2 tháng 5 2019

Cảm ơn ạ

14 tháng 6 2020

\(D=\frac{sin4x+sin5x+sin6x}{cos4x+cos5x+cos6x}\)

\(=\frac{\left(sin4x+sin6x\right)+sin5x}{\left(cos4x+cos6x\right)+cos5x}\)

\(=\frac{2sin\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+sin5x}{2cos\frac{4x+6x}{2}.cos\frac{4x-6x}{2}+cos5x}\)

\(=\frac{2sin5x.cos\left(-x\right)+sin5x}{2cos5x.cos\left(-x\right)+cos5x}=\frac{sin5x\left(2.cos\left(-x\right)+1\right)}{cos5x\left(2.cos\left(-x\right)+1\right)}=\frac{sin5x}{cos5x}=tan5x\)

NV
25 tháng 7 2020

c/

\(\Leftrightarrow sinx+sin3x+sin2x=cosx+cos3x+cos2x\)

\(\Leftrightarrow2sin2x.cosx+sin2x=2cos2x.cosx+cos2x\)

\(\Leftrightarrow sin2x\left(2cosx+1\right)=cos2x\left(2cosx+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2cosx+1=0\\sin2x=cos2x=sin\left(\frac{\pi}{2}-2x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-\frac{1}{2}\\2x=\frac{\pi}{2}-2x+k2\pi\\2x=2x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm\frac{2\pi}{3}+k2\pi\\x=\frac{\pi}{8}+\frac{k\pi}{2}\\\end{matrix}\right.\)

NV
25 tháng 7 2020

b/

\(\Leftrightarrow sin2x+sin6x-\left(cos5x+cosx\right)=0\)

\(\Leftrightarrow2sin4x.cos2x-2cos3x.cos2x=0\)

\(\Leftrightarrow cos2x\left(sin4x-cos3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin4x=cos3x=sin\left(\frac{\pi}{2}-3x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\4x=\frac{\pi}{2}-3x+k2\pi\\4x=3x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{14}+\frac{k2\pi}{7}\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)