K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Khi cát tuyến MCD không đi qua O.

IC = ID (gt)

OI ⊥ CD (đường kính đi qua điểm chính giữa của dây không đi qua tâm)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

A, I, B nhìn MO dưới một góc bằng 90º nên A, I, B nằm trên đường tròn đường kính MO.

Vậy: Ngũ giác MAOIB nội tiếp.

(Khi cát tuyến MCD đi qua O ngũ giác MAOIB suy biến thành tứ giác MAOB chứng minh tương tự).

18 tháng 1 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

A, B, I nhìn MO cố định dưới một góc bằng 90° nên A, B, I nằm trên đường tròn bán kính MO.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

B và C cùng nằm trên một nửa mặt phẳng bờ chứa đường HI tạo với HI một góc bằng nhau nên tứ giác BCHI nội tiếp.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC

a: Xét tứ giác MAOB có

\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)

=>MAOB là tứ giác nội tiếp

=>M,A,O,B cùng thuộc một đường tròn

b; Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB

6 tháng 12 2023

bạn ơi cho mình xin hình vẽ được không

 

21 tháng 4 2021

undefined

a) Chứng minh tứ giác MAOB nội tiếp đường tròn
Xét tứ giác MAOB có: \(\widehat{MAO}=90\text{°}\) (MA là tiếp tuyến của (O)); \(\widehat{MBO}=90\text{°}\) (MB là tiếp tuyến của (O))
→ \(\widehat{MAO}+\widehat{MBO}=180\text{°}\)
mà \(\widehat{MAO}\) và \(\widehat{MBO}\) là hai góc đối nhau
→ Tứ giác MAOB nội tiếp (dhnb) (đpcm)

b) Chứng minh MA.AB = 2MH.AO
Ta có: OA = OB (A, B ∈ (O))
→ O thuộc đường trung trực của AB (1)
Lại có: MA = MB (Tính chất hai tiếp tuyến cắt nhau)
→ M thuộc đường trung trực của AB (2)
Từ (1) và (2) → OM là đường trung trực của AB
→ OM ⊥ AB tại H và H là trung điểm của AB
→ \(\widehat{MHA}=90\text{°}\) và AB = 2AH
Xét ∆MAO và ∆MHA có: \(\widehat{MAO}=\widehat{MHA}=90\text{°}\)\(\widehat{M}\) chung
→ ∆MAO ∼ ∆MHA (g.g) → \(\dfrac{MA}{MH}=\dfrac{AO}{HA}\) (cặp cạnh tương ứng)
→ MA.HA = MH.AO
→ 2MA.HA = 2MH.AO
Mà AB = 2AH (cmt) → MA.AB = 2MH.AO (đpcm)

21 tháng 4 2021

 MA.HA = MH.AO
→ 2MA.HA = 2MH.AO
Mà AB = 2AH (cmt) → MA.AB = 2MH.AO (đpcm) 
chỗ đây ko hiểu ;;;-;;;

loading...  loading...  

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có 

\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)

\(\widehat{CAM}\) là góc tạo bởi dây cung CA và tiếp tuyến AM

Do đó: \(\widehat{ADC}=\widehat{CAM}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{MDA}=\widehat{MAC}\)

Xét ΔMDA và ΔMAC có 

\(\widehat{MDA}=\widehat{MAC}\)(cmt)

\(\widehat{AMD}\) là góc chung

Do đó: ΔMDA∼ΔMAC(g-g)

\(\dfrac{MD}{MA}=\dfrac{MA}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(MA^2=MC\cdot MD\)(đpcm)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔOAM vuông tại A có AH là đường cao ứng với cạnh huyền OM, ta được:

\(MA^2=MH\cdot MO\)(2)

Từ (1) và (2) suy ra \(MH\cdot MO=MC\cdot MD\)(đpcm)

10 tháng 4 2022

c) để chứng minh EC là tiếp tuyến:

chứng minh tứ giác OECH nội tiếp thì ta sẽ có góc OHE=OCE=90o(đpcm)

=> cần chứng minh tứ giác OECH nội tiếp:

ta có: DOC=DHC (ccc CD)

xét MHC=MDO (tam giác MCH~MOD)= OCD (vì DO=OC)=OHD (cùng chắn OD) => HA là phân giác CHD

DOC=DHC => 1/2 DOC= 1/2 DHC =COE=CHE

mà COE với CHE cùng chắn cung CE trong tứ giác OHCE nên tứ giác đấy nội tiếp => xong :))))

a: Phải vì góc này tạo bởi tiếp tuyến MA và day cung AB

b: Xét ΔMOA vuông tại A có cosMOA=OA/OM=1/2

=>góc MOA=60 độ

sđ cung AB=2*60=120 độ

c: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại H

=>MH*MO=MA^2

Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC=MH*MO

 

12 tháng 3 2023

Giúp mình giải câu e với ạ