K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

a) \(2x^2+5y^2+8x-10y+13=0\)

\(\Leftrightarrow\left(2x^2+8x+8\right)+\left(5y^2-10y+5\right)=0\)

\(\Leftrightarrow2\left(x+2\right)^2+5\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+2\right)^2=0\\5\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)

Vậy x=-2;y=1

b) \(3x^2+5y^2-6x+20y+23=0\)

\(\Leftrightarrow\left(3x^2-6x+3\right)+\left(5y^2+20y+20\right)=0\)

\(\Leftrightarrow3\left(x-1\right)^2+5\left(y+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x-1\right)^2=0\\5\left(y+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy x=1;y=-2

NV
23 tháng 1

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-6y+9\right)=5\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-3\right)^2=5\)

\(\Leftrightarrow\left(x-2y\right)^2=5-\left(y-3\right)^2\) (1)

Do \(\left(x-2y\right)^2\ge0;\forall x;y\)

\(\Rightarrow5-\left(y-3\right)^2\ge0\Rightarrow\left(y-3\right)^2\le5\)

\(\Rightarrow\left[{}\begin{matrix}\left(y-3\right)^2=0\\\left(y-3\right)^2=1\\\left(y-3\right)^2=4\end{matrix}\right.\)

Thay vào (1):

- Với \(\left(y-3\right)^2=0\)  \(\Rightarrow\left(x-2y\right)^2=5\) vô nghiệm do 5 ko phải SCP

- Với \(\left(y-3\right)^2=1\Rightarrow\left[{}\begin{matrix}y=4\\y=2\end{matrix}\right.\)

\(y=4\Rightarrow\left(x-8\right)^2=4\Rightarrow\left[{}\begin{matrix}x=10\\x=6\end{matrix}\right.\)

\(y=2\Rightarrow\left(x-4\right)^2=4\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

- Với \(\left(y-3\right)^2=4\Rightarrow\left[{}\begin{matrix}y=5\\y=1\end{matrix}\right.\)

\(y=5\Rightarrow\left(x-10\right)^2=1\Rightarrow\left[{}\begin{matrix}x=11\\x=9\end{matrix}\right.\)

\(y=1\Rightarrow\left(x-2\right)^2=1\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Em tự kết luận các cặp nghiệm

NV
23 tháng 1

Chắc phải là cặp số nguyên chứ có vô số cặp x;y bất kì thỏa mãn pt này

4 tháng 10 2016

\(10y^2+x^2-6xy-5y+6=0\)

\(\Leftrightarrow10y^2-y\left(6x+5\right)+x^2+6=0\)

Để pt trên có nghiệm thì \(\Delta=\left(6x+5\right)^2-4.10.\left(x^2+6\right)=-4x^2+60x-215\ge0\)

\(\Rightarrow\frac{15-\sqrt{10}}{2}\le x\le\frac{15+\sqrt{10}}{2}\)

hay \(6\le x\le9\) (vì x nguyên)

Xét x trong khoảng trên, từ đó thay x vào pt trên để tìm y

15 tháng 10 2023

a) x=3 ; y=8
b) x=4 ; y=0
c) x=3 ; y=0
d) x=3 ; y=0

26 tháng 7 2021

tks mn

 

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\left|3y-1\right|\ge0\forall y\)

\(\left|z+2\right|\ge0\forall z\)

Do đó: \(\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(1;\dfrac{1}{3};-2\right)\)