Tìm các số thực x,y thoả mãn phương trình:
a) \(2x^2+5y^2+8x-10y+13=0\)
b)\(3x^2+5y^2-6x+20y+23=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-6y+9\right)=5\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-3\right)^2=5\)
\(\Leftrightarrow\left(x-2y\right)^2=5-\left(y-3\right)^2\) (1)
Do \(\left(x-2y\right)^2\ge0;\forall x;y\)
\(\Rightarrow5-\left(y-3\right)^2\ge0\Rightarrow\left(y-3\right)^2\le5\)
\(\Rightarrow\left[{}\begin{matrix}\left(y-3\right)^2=0\\\left(y-3\right)^2=1\\\left(y-3\right)^2=4\end{matrix}\right.\)
Thay vào (1):
- Với \(\left(y-3\right)^2=0\) \(\Rightarrow\left(x-2y\right)^2=5\) vô nghiệm do 5 ko phải SCP
- Với \(\left(y-3\right)^2=1\Rightarrow\left[{}\begin{matrix}y=4\\y=2\end{matrix}\right.\)
\(y=4\Rightarrow\left(x-8\right)^2=4\Rightarrow\left[{}\begin{matrix}x=10\\x=6\end{matrix}\right.\)
\(y=2\Rightarrow\left(x-4\right)^2=4\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)
- Với \(\left(y-3\right)^2=4\Rightarrow\left[{}\begin{matrix}y=5\\y=1\end{matrix}\right.\)
\(y=5\Rightarrow\left(x-10\right)^2=1\Rightarrow\left[{}\begin{matrix}x=11\\x=9\end{matrix}\right.\)
\(y=1\Rightarrow\left(x-2\right)^2=1\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Em tự kết luận các cặp nghiệm
Chắc phải là cặp số nguyên chứ có vô số cặp x;y bất kì thỏa mãn pt này
\(10y^2+x^2-6xy-5y+6=0\)
\(\Leftrightarrow10y^2-y\left(6x+5\right)+x^2+6=0\)
Để pt trên có nghiệm thì \(\Delta=\left(6x+5\right)^2-4.10.\left(x^2+6\right)=-4x^2+60x-215\ge0\)
\(\Rightarrow\frac{15-\sqrt{10}}{2}\le x\le\frac{15+\sqrt{10}}{2}\)
hay \(6\le x\le9\) (vì x nguyên)
Xét x trong khoảng trên, từ đó thay x vào pt trên để tìm y
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left|3y-1\right|\ge0\forall y\)
\(\left|z+2\right|\ge0\forall z\)
Do đó: \(\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(1;\dfrac{1}{3};-2\right)\)
a) \(2x^2+5y^2+8x-10y+13=0\)
\(\Leftrightarrow\left(2x^2+8x+8\right)+\left(5y^2-10y+5\right)=0\)
\(\Leftrightarrow2\left(x+2\right)^2+5\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x+2\right)^2=0\\5\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\)
Vậy x=-2;y=1
b) \(3x^2+5y^2-6x+20y+23=0\)
\(\Leftrightarrow\left(3x^2-6x+3\right)+\left(5y^2+20y+20\right)=0\)
\(\Leftrightarrow3\left(x-1\right)^2+5\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3\left(x-1\right)^2=0\\5\left(y+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy x=1;y=-2