A= \(\dfrac{1}{5^2}\)+\(\dfrac{2}{5^3}\)+\(\dfrac{3}{5^4}\)+.....+\(\dfrac{n}{5^{n+1}}\)+......+\(\dfrac{11}{5^{12}}\) với n\(\in\)N.chứng minh A<\(\dfrac{1}{16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+...+\dfrac{11}{5^{11}}.\)
\(4A=5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}=B-\dfrac{11}{5^{12}}.\)
\(5B=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{10}}.\)
\(4B=5B-B=1-\dfrac{1}{5^{11}}\)
\(\Rightarrow4A=\dfrac{1}{4}\left(1-\dfrac{1}{5^{11}}\right)-\dfrac{1}{5^{12}}< \dfrac{1}{4}\Rightarrow A< \dfrac{1}{16}\)
Ta có: \(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+...+\dfrac{11}{5^{12}}\)
\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+...+\dfrac{11}{5^{11}}\)
\(\Rightarrow5A-A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow20A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)
\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)
\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)
\(\Rightarrow A< \dfrac{1}{16}\)
⇒5A=15+252+...+11511⇒5A=15+252+...+11511
⇒5A−A=15+152+...+1511−11512⇒5A−A=15+152+...+1511−11512
⇒4A=15+152+...+1511−11512⇒4A=15+152+...+1511−11512
⇒20A=1+15+...+1510−11511⇒20A=1+15+...+1510−11511
⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)⇒20A−4A=(1+15+...+1510−11511)−(15+152+...+1511−11512)
⇒16A=1−12511+11512<1⇒16A=1−12511+11512<1
⇒A<116⇒A<116
cau 1
de a dat gia tri lon nhat suy ra5a-17/4a-23 lon nhat
suy ra 4a-23 phai nho nhat khac 0 va la so nguyen duong
suy ra 4a-23=1
suy ra 4a=1+23=24
suy ra a=24 chia 4=6
vay de a nho nhat thi a=6
a) Ta có: \(a\left(-\dfrac{3}{2}\right)+a\cdot\dfrac{1}{4}-a\cdot\dfrac{5}{6}\)
\(=a\left(-\dfrac{3}{2}+\dfrac{1}{4}-\dfrac{5}{6}\right)\)
\(=a\left(\dfrac{-18}{12}+\dfrac{3}{12}-\dfrac{10}{12}\right)\)
\(=a\cdot\dfrac{-25}{12}\)(1)
Thay \(a=\dfrac{3}{5}\) vào biểu thức (1), ta được:
\(\dfrac{3}{5}\cdot\dfrac{-25}{12}=\dfrac{-75}{60}=\dfrac{-5}{4}\)
a: \(A=\dfrac{19}{9}+\dfrac{4}{11}+\dfrac{2}{3}=\dfrac{209}{99}+\dfrac{44}{99}+\dfrac{66}{99}=\dfrac{319}{99}\)
b: \(B=\dfrac{-50}{60}+\dfrac{-35}{60}+\dfrac{12}{60}=\dfrac{-73}{60}\)
c: \(C=\dfrac{-27}{36}+\dfrac{132}{36}+\dfrac{10}{36}=\dfrac{115}{36}\)
d: \(D=\dfrac{-19}{3}+\dfrac{2}{3}-\dfrac{4}{5}=\dfrac{-17}{3}-\dfrac{4}{5}=\dfrac{-85-12}{15}=-\dfrac{97}{15}\)
2) Để A là nguyên thì n - 1 là ước nguyên của 2
\(n-1=1\Rightarrow n=2\)
\(n-1=2\Rightarrow n=3\)
3) Ta gọi M là \(\dfrac{12}{5^{2012}}\)
\(M=\dfrac{5.12}{5^{2012}.5}=\dfrac{60}{5^{2013}}\)
\(\Rightarrow\) \(A=\dfrac{60}{5^{2013}}+\dfrac{18}{5^{2013}}=\dfrac{78}{5^{2013}}\)
Ta gọi Q là \(\dfrac{18}{5^{2012}}\)
\(Q=\dfrac{18}{5^{2012}}=\dfrac{18.5}{5^{2012}.5}=\dfrac{90}{5^{2013}}\)
\(\Rightarrow\) \(B=\dfrac{90}{5^{2013}}+\dfrac{12}{5^{2013}}=\dfrac{102}{5^{2013}}\)
\(\dfrac{90}{5^{2013}}< \dfrac{102}{5^{2013}}\Rightarrow A< B\)
Ai thấy đúng thì ủng hộ mink, thấy sai góp ý nha !!!
Ta có :
\(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+.............+\dfrac{n}{5^{n+1}}+.....+\dfrac{11}{5^{12}}\)
\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{3^3}+........+\dfrac{n}{5^n}+..........+\dfrac{11}{5^{11}}\)
\(\Rightarrow5A-A=\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+.....+\dfrac{n}{5^n}+....+\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5^2}+\dfrac{2}{5^3}+.....+\dfrac{n}{5^{n+1}}+........+\dfrac{11}{5^{12}}\right)\)\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+........+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow20A=1+\dfrac{1}{5}+.........+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)
\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+.......+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+........+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)
\(\Rightarrow A< \dfrac{1}{16}\rightarrowđpcm\)