Cho a^2+b^2+c^2=2 tìm GTNN của ab+2bc+ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow5a^2+\frac{5}{2}\left(b+c\right)^2\le9a\left(b+c\right)+18bc\le9a\left(b+c\right)+\frac{9}{2}\left(b+c\right)^2\)
\(\Rightarrow5a^2\le9a\left(b+c\right)+2\left(b+c\right)^2\)
\(\Rightarrow5a^2\le18.\frac{a}{2}\left(b+c\right)+2\left(b+c\right)^2\le9\left(\frac{a^2}{4}+\left(b+c\right)^2\right)+2\left(b+c\right)^2\)
\(\Rightarrow\frac{11a^2}{4}\le11\left(b+c\right)^2\Rightarrow b+c\ge\frac{a}{2}\Rightarrow\frac{b+c}{a}\ge\frac{1}{2}\)
\(P\ge1010\left(\frac{b+c}{a}\right)^2+\frac{a}{b+c}\)
Đặt \(\frac{b+c}{a}=x\ge\frac{1}{2}\Rightarrow P\ge1010x^2+\frac{1}{x}=1006x^2+4x^2+\frac{1}{2x}+\frac{1}{2x}\)
\(\Rightarrow P\ge1006.\left(\frac{1}{2}\right)^2+3\sqrt[3]{\frac{4x^2}{4x^2}}=...\)
\(\sqrt{a^2+2ab+2b^2}=\sqrt{\left(a+b\right)^2+b^2}=\dfrac{1}{\sqrt{5}}\sqrt{\left(4+1\right)\left[\left(a+b\right)^2+b^2\right]}\ge\dfrac{1}{\sqrt{5}}\left(2a+2b+b\right)=\dfrac{1}{\sqrt{5}}\left(2a+3b\right)\)
Tương tự:
\(\sqrt{b^2+2bc+2c^2}\ge\dfrac{1}{\sqrt{5}}\left(2b+3c\right)\)
\(\sqrt{c^2+2ca+2a^2}\ge\dfrac{1}{\sqrt{5}}\left(2c+3a\right)\)
Cộng vế:
\(P\ge\dfrac{1}{\sqrt{5}}\left(5a+5b+5c\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Nguyễn Việt Lâm Giáo viên, thầy ơi cho em hỏi làm thế này rồi làm tiếp có ra như trên được không ạ?? Em làm kiểu này không ra như trên!!!
\(\sqrt{a^2+2ab+2b^2}=\sqrt{\left(a+b\right)^2+b^2}=\dfrac{1}{\sqrt{5}}\sqrt{\left(1+4\right).[\left(a+b\right)^2+b^2]}\ge\dfrac{1}{\sqrt{5}}.\left(a+b+2b\right)=\dfrac{1}{\sqrt{5}}.\left(a+3b\right)\)
Áp dụng giả thiết và bất đẳng thức AM - GM, ta được: \(\sqrt{8a^2+48}=\sqrt{8\left(a^2+6\right)}=\sqrt{8\left(a^2+ab+2bc+2ca\right)}=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le\left(2a+2b\right)+\left(a+2c\right)=3a+2b+2c\)\(\sqrt{8b^2+48}=\sqrt{8\left(b^2+6\right)}=\sqrt{8\left(b^2+ab+2bc+2ca\right)}=2\sqrt{2\left(a+b\right)\left(b+2c\right)}\le\left(2a+2b\right)+\left(b+2c\right)=2a+3b+2c\)\(\sqrt{4c^2+6}=\sqrt{4c^2+ab+2bc+2ca}=\sqrt{\left(2c+a\right)\left(2c+b\right)}\le\frac{\left(2c+a\right)+\left(2c+b\right)}{2}=\frac{4c+a+b}{2}\)Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{8a^2+48}+\sqrt{8b^2+48}+\sqrt{4c^2+6}\le\frac{11}{2}a+\frac{11}{2}b+6c\)
\(\Rightarrow\frac{11a+11b+12c}{\sqrt{8a^2+48}+\sqrt{8b^2+48}+\sqrt{4c^2+6}}\ge\frac{11a+11b+12c}{\frac{11}{2}a+\frac{11}{2}b+6c}=2\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}ab+2bc+2ca=6\\a+2b=2c;b+2a=2c;a=b\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\sqrt{\frac{6}{7}}\\c=\frac{3\sqrt{42}}{14}\end{cases}}\)
Lời giải:
Xét tử :
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=\frac{a^2}{a^2+bc+(-ab-ac)}+\frac{b^2}{b^2+ac+(-ab-bc)}+\frac{c^2}{c^2+ab+(-bc-ac)}\)
\(=\frac{a^2}{a(a-b)-c(a-b)}+\frac{b^2}{b(b-c)-a(b-c)}+\frac{c^2}{c(c-a)-b(c-a)}\)
\(=\frac{a^2}{(a-c)(a-b)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}\)
\(=\frac{a^2(c-b)+b^2(a-c)+c^2(b-a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)
Xét mẫu (tương tự bên tử)
\(\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}=\frac{bc}{(a-c)(a-b)}+\frac{ac}{(b-a)(b-c)}+\frac{ab}{(c-a)(c-b)}\)
\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{(a-b)(b-c)(c-a)}=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(a-b)(b-c)(c-a)}\)
\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)
Do đó:
\(A=\frac{1}{1}=1\)