Tìm n \(\in\) N* biết \(\dfrac{1}{21}+\dfrac{1}{77}+\dfrac{1}{165}+...+\dfrac{1}{n^2+4n}=\dfrac{56}{673}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1n2+4n=14(1n−1n+4)1n2+4n=14(1n−1n+4) Khi đó pt tương đương: 14(13−17+17−111+...+1n−1n+4)=5667314(13−17+17−111+...+1n−1n+4)=56673 ⟺13−1n+4=224673=>n=2015
Giải:
a)A=1/56+1/72+1/90+1/110+1/132+1/156
A=1/7.8+1/8.9+1/9.10+1/10.11+1/11.12+1/12.13
A=1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12+1/12-1/13
A=1/7-1/13
A=6/91
b)B=4/21+4/77+4/165+4/285+4/437+4/621
B=4/3.7+4/7.11+4/11.15+4/15.19+4/19.23+4/23.27
B=1/3-1/7+1/7-1/11+1/11-1/15+1/15-1/19+1/19-1/23+1/23-1/27
B=1/3-1/27
B=8/27
c) C=1/21+1/77+1/165+1/285+1/437+1/621
C=1/3.7+1/7.11+1/11.15+1/15.19+1/19.23+1/23.27
C=1/4.(4/3.7+4/7.11+4/11.15+4/15.19+4/19.23+4/23.27)
C=1/4.(1/3-1/7+1/7-1/11+1/11-1/15+1/15-1/19+1/19-1/23+1/23-1/27)
C=1/4.(1/3-1/27)
C=1/4.8/27
C=2/27
d) D=1/1.6+1/6.11+1/11.16+1/16.21+1/21.26+1/26.31
D=1/5.(5/1.6+5/6.11+5/11.16+5/16.21+5/21.26+5/26.31)
D=1/5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26+1/26-1/31)
D=1/5.(1/1-1/31)
D=1/5.30/31
D=6/31
Nếu câu d cậu viết thiếu thì làm như vầy nhé!
Chúc bạn học tốt!
Nếu như câu d ko chép sai thì làm thế này nha:
d) D=1/1.6+1/6.11+1/11.16+1/16.21+1/26.31
D=1/5.(5/1.6+5/6.11+5/11.16+5/16.21)+1/806
D=1/5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21)+1/806
D=1/5.(1/1-1/21)+1/806
D=1/5.20/21+1/806
D=4/21+1/806
D=3245/16926
Chúc bạn học tốt!
\(\frac{1}{21}+\frac{1}{77}+\frac{1}{165}+...+\frac{1}{n^2+4n}=\frac{56}{673}\)
<=> \(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}=\frac{56}{673}\)
<=> \(4.\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{n.\left(n+4\right)}\right)=4.\frac{56}{673}\)
<=> \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{n\left(n+4\right)}=\frac{224}{673}\)
<=> \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+4}=\frac{224}{673}\)
<=> \(\frac{1}{3}-\frac{1}{n+4}=\frac{224}{673}\)
<=> \(\frac{n+4-3}{3.\left(n+4\right)}=\frac{224}{673}\Leftrightarrow\frac{n}{3.\left(n+4\right)}=\frac{224}{673}\)
<=> 673n = 224.3(n+4)
<=> 673n = 224.3.n + 224.3.4
<=> 673n = 672n + 2688
<=> 673n - 672n = 2688
<=> n = 2688
\(\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{6}-\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{18}\)
\(\Leftrightarrow x+1=18\)
\(\Leftrightarrow x=17\)
Có: \(\dfrac{1}{21}+\dfrac{1}{77}+\dfrac{1}{165}+...+\dfrac{1}{n^2+4n}=\dfrac{56}{673}\)
\(\Leftrightarrow\dfrac{1}{3.7}+\dfrac{1}{7.11}+\dfrac{1}{11.15}+...+\dfrac{1}{n\left(n+4\right)}=\dfrac{56}{673}\)
\(\Leftrightarrow\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{n\left(n+4\right)}=\dfrac{4.56}{673}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{n}-\dfrac{1}{n+4}=\dfrac{224}{673}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{n+4}=\dfrac{224}{673}\)
\(\Leftrightarrow\dfrac{1}{n+4}=\dfrac{1}{2019}\)
\(\Leftrightarrow n=2015\)