rút gọn a= 1+5+5^2+5^3+...+5^49+5^50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5 thành 51
1+1+2+3+4+.......+49+50 rồi tính số số hạng,tìm tổng.cuối cùng +1
A = 1 + 5 + 52 + 53 + 53 + ...+ 549 + 550
5A = 5(50+51+52+53+...+549+550)
5A=51+52+53+54+...+550+551
5A-A=(51+52+53+54+...+550+551)-(50 + 51 + 52 + 53 + 53 + ...+ 549 + 550)
4A=551-1
A=(551-1):4
5A = 5 + 5^2 + 5^3 + 5^4 + 5^5 +...+ 5^50 + 5^51
=> 4A = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 +...+ 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 +...+ 5^49 + 5^50 )
=> 4A = 5^51 - 1
=> A = \(\frac{5^{51}-1}{4}\)
5A=5+52+53+...+550+551
5A-A=551-1
A=551-1:4
tick mk nha cái kia sai rôi
Ta có :A = 1 + 5 + 52 + 53 + .... + 549 + 550
=> 5A = 5 + 52 + 53 + .... + 550 + 551
=> 5A - A = 551 - 1
=> 4A = 551 - 1
=> A = \(\frac{5^{51}-1}{4}\)
Ta có:
A = 1+ 5 + 52 + 53 + ......... + 549 + 550
=> 5A = 5 + 52 + 53 + 54 +.......+ 549 + 550
Do đó: 5A - A = 551 - 1
Vậy A = \(\frac{5^{51}-1}{4}\)
Rút gọn:
\(A=5^0+5^1+5^2+...+5^{99}+5^{50}\)
\(5A=5^1+5^2+5^3+...+5^{51}\)
\(5A-A=\left(5^1+5^2+5^3+...+5^{51}\right)-\left(5^0+5^1+5^2+...+5^{50}\right)\)
\(4A=5^{51}-5^0\)
\(=>A=\left(5^{51}-5^0\right):4\)
Vậy : \(A=\left(5^{51}-5^0\right):4\)