chứng minh x^4+16>=2x^3+8x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2a^3+8a\le a^4+16\)
\(\Leftrightarrow a^4-2a^3-8a+16\ge0\)
\(\Leftrightarrow a^3\left(a-2\right)-8\left(a-2\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)\left(a^3-8\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)\left(a-2\right)\left(a^2+2a+4\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\)(luôn đúng)
=>đpcm
Nhật Linh lm lun:))
\(a^2+2a+4=a^2+2a+1+3=\left(a+1\right)^2+3>0\left(đpcm\right)\)
Giả sử : \(x^4+16\ge2x^3+8x\)
\(\Leftrightarrow x^4-2x^3-8x+16\ge0\)
\(\Leftrightarrow\left(x^4-2x^3\right)-\left(8x-16\right)\ge0\)
\(\Leftrightarrow x^3\left(x-2\right)-8\left(x-2\right)\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-8\right)\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)\left(x^2+2x+4\right)\ge0\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+2x+4\right)\ge0\) ( luôn đúng )
⇒ đpcm
Tử \(x^4+2x^3+8x+16\)
\(=x^4-2x^3+4x^2+4x^3-8x^2+16x+4x^2-8x+16\)
\(=x^2\left(x^2-2x+4\right)+4x\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)
\(=\left(x^2+4x+4\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)^2\left(x^2-2x+4\right)\)
Mẫu \(x^4-2x^3+8x^2-8x+16\)
\(=x^4-2x^3+4x^2+4x^2-8x+16\)
\(=x^2\left(x^2-2x+4\right)+4\left(x^2-2x+4\right)\)
\(=\left(x^2+4\right)\left(x^2-2x+4\right)\)
Thay tử và mẫu vào ta có:\(\frac{\left(x+2\right)^2\left(x^2-2x+4\right)}{\left(x^2+4\right)\left(x^2-2x+4\right)}=\frac{\left(x+2\right)^2}{x^2+4}\ge0\)
Dấu "=" khi \(\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Vậy Min=0 khi x=-2
\(2x-3>5x-4\)
\(\Leftrightarrow2x-5x>-4+3\)
\(\Leftrightarrow-3x>-1\)
\(\Leftrightarrow x>\frac{1}{3}\)
\(-5x+6< \frac{1}{3}\)
\(\Leftrightarrow-5x< \frac{1}{3}-6\)
\(\Leftrightarrow-5x< \frac{1}{3}-\frac{18}{3}\)
\(\Leftrightarrow-5x< \frac{-17}{3}\)
\(\Leftrightarrow x< \frac{-17}{3}\div\left(-5\right)\)
\(\Leftrightarrow x< \frac{17}{15}\)
x4+16\(\ge\)2x3+8x
\(\Leftrightarrow\)x4-2x3-8x+16\(\ge\)0
\(\Leftrightarrow\)(x-2)(x3-8)\(\ge\)0
\(\Leftrightarrow\)(x-2)2(x2+x+4)\(\ge\)0 (*)
Ta có: (x-2)2\(\ge\)0
Và x2+x+4=(x+\(\dfrac{1}{2}\))2+\(\dfrac{15}{4}\)>0
Nên (*) luôn đúng
Vậy x4+16\(\ge\)2x3+8x
cảm ơn bạn nhìu nhờ bạn làm bài này đc ko ạ
chứng minh 2a^3+8a<=a^4+16