K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

20 tháng 1 2018

cần gấp ai trả lời mink cho

28 tháng 4 2020

gửi mk đáp án vs ạ

22 tháng 4 2022

loading...

loading...  

13 tháng 6 2019

A B C D P Q H

a) Xét tam giác BHP và tam giác CHB có: \(\widehat{HPB}=\widehat{HBC}\)( cùng phụ góc PBH) (1)

và \(\widehat{PHB}=\widehat{BHC}\left(=90^o\right)\)

=> tam giác BHP ~  tam giác CHB 

=> \(\frac{BH}{HC}=\frac{BP}{BC}\Leftrightarrow\frac{BH}{HC}=\frac{BQ}{DC}\)( vì BP=BQ, BC=DC)

Ta lại có : \(\widehat{HPB}=\widehat{HCD}\) ( so le trong) (2)

Từ (1) , (2) => \(\widehat{HBC}=\widehat{HCD}\)   =>  \(\widehat{HBQ}=\widehat{HCD}\)

Xét tam giác HBQ và tam giác HCD có:

\(\frac{BH}{HC}=\frac{BQ}{DC}\)\(\widehat{HBQ}=\widehat{HCD}\)

=>  tam giác HBQ ~tam giác HCD 

b)  Có:  tam giác HBQ ~tam giác HCD  ( theo a)

=> \(\widehat{DHC}=\widehat{QHB}\)

mà \(\widehat{QHB}+\widehat{QHC}=\widehat{BHC}=90^o\)

=> ​\(\widehat{DHC}+\widehat{QHC}=\widehat{DHQ}=90^o\)



 

16 tháng 4 2020

a, có : ^DCH + ^HCB = 90 

^HCB + ^CBH = 90

=> ^DCH = ^HBC           (1)

có : ^DHC + ^CHN = 90

^BHN + ^NHC = 90

=> ^DHC = ^BHN  (2)

(1)(2) => tg CHD đồng dạng với tg BHN (g-g)

b, ^HMB + ^MBH = 90

^HBC + ^HBM  = 90

=> ^HMB = ^HBC

xét tg MBH và tg BCH có : ^MHB = ^CHB = 90

=> tg MHB đồng dạng với tg BHC (g-g)

b, tg MHB đồng dạng với tg BHC (câu b) => MB/BC = HB/HC (đn)             

tg CHD đồng dạng với tg BHN (câu a) => BN/DC = HB/HC (đn)

=> MB/BC = BN/DC

BC = DC do ABCD là hình vuông (gt)

=> BM = BN