cho K = 1/ 4mu 2 + 1/ 5 mũ 2 + . . .+1/99 mũ 2
chứng minh rằng: 1/5 < K < 1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)
\(\frac{1}{5^2}=\frac{1}{5.5}< \frac{1}{4.5}\)
\(\frac{1}{6^2}=\frac{1}{6.6}< \frac{1}{5.6}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow\)K<\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
K<\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
K<\(\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)
\(\Rightarrow K< \frac{1}{3}\) (1)
Ta có : \(\frac{1}{4^2}=\frac{1}{4.4}=\frac{1}{16}\)
\(\frac{1}{5^2}=\frac{1}{5.5}>\frac{1}{5.6}\)
\(\frac{1}{6^2}=\frac{1}{6.6}>\frac{1}{6.7}\)
...
\(\frac{1}{99^2}=\frac{1}{99.99}>\frac{1}{99.100}\)
\(\frac{1}{100^2}=\frac{1}{100.100}>\frac{1}{100.101}\)
\(\Rightarrow K>\frac{1}{16}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}+\frac{1}{100.101}\)
K>\(\frac{1}{16}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
K>\(\frac{1}{16}+\frac{1}{5}-\frac{1}{101}>\frac{1}{5}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{1}{5}< K< \frac{1}{3}\)
Vậy \(\frac{1}{5}< K< \frac{1}{3}.\)
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
Gọi \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(\forall A>\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
\(\Leftrightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< A< \frac{1}{2}\)
\(\Rightarrowđpcm\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
Vậy
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Lời giải:
$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1000^2}$
$< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}$
$=\frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$
$=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$
$=\frac{1}{4}+\frac{1}{2}-\frac{1}{1000}$
$< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}$
Ta có đpcm.
Ta thấy :
\(\dfrac{1}{4^2}>\dfrac{1}{4.5}\)
\(\dfrac{1}{5^2}>\dfrac{1}{5.6}\)
..............
\(\dfrac{1}{99^2}>\dfrac{1}{99.100}\)
\(\Rightarrow\) \(K>\dfrac{1}{4.5}+\dfrac{1}{5.6}+.....+\dfrac{1}{99.100}\)
Ta có công thức \(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\)
Dựa vào công thức ta có :
\(\dfrac{1}{4.5}=\dfrac{1}{4}-\dfrac{1}{5}\)
\(\dfrac{1}{5.6}=\dfrac{1}{5}-\dfrac{1}{6}\)
.......................
\(\dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow\) \(K>\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+......+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow\) \(K>\dfrac{1}{4}-\dfrac{1}{100}\)
\(\Rightarrow K>\dfrac{6}{25}>\dfrac{1}{5}\Rightarrow dpcm\) (1)
Ta có :
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)
................
\(\dfrac{1}{99^2}< \dfrac{1}{98.99}\)
Dựa vào công thức \(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\) ta có :
\(K< \dfrac{1}{3.4}+\dfrac{1}{4.5}+......+\dfrac{1}{98.99}\)
\(\Rightarrow\) \(K< \dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+.......+\dfrac{1}{98}-\dfrac{1}{99}\)
\(\Rightarrow\) \(K< \dfrac{1}{3}-\dfrac{1}{99}\)
Vậy \(K< \dfrac{32}{99}< \dfrac{1}{3}\Rightarrow dpcm\) (2)
(1) ; (2) \(\Rightarrow\) \(\dfrac{1}{5}< K< \dfrac{1}{3}\)
Ai thấy đúng thì ủng hộ nha !!!
Công thức tổng quát: \(\dfrac{1}{n\left(n+1\right)}< \dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)
=>\(\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}< K< \dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{98.99}\)
=>\(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}< K< \dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
=>\(\dfrac{1}{4}-\dfrac{1}{100}< K< \dfrac{1}{3}-\dfrac{1}{100}\)
=>\(\dfrac{1}{4}< K< \dfrac{1}{3}\)
=>\(\dfrac{1}{5}< K< \dfrac{1}{3}\left(do\dfrac{1}{4}>\dfrac{1}{5}\right)\)