K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Sai đề. Ví dụ: x = y = 1 => x2 - 3xy + y2 = 12 - 3.1.1 + 12 = -1

8 tháng 9 2019

Bằng bước biến đổi \(P=\frac{\left(x+y\right)^2+xy}{\sqrt{xy}.\left(x+y\right)}\)ta có cách giải sau

Áp dụng Bất đẳng thức AM-GM,ta có: \(P=\frac{\left(x+y\right)^2+xy}{\sqrt{xy}.\left(x+y\right)}\ge\frac{2\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(x+y\right)}=2\)

Vậy giá trị nhỏ nhất của P là 2 đạt được khi \(\left(x+y\right)^2=xy\Leftrightarrow x^2+xy+y^2=0\)

Cơ mà nếu vậy thì P không có giá trị nhỏ nhất à, hay là em làm sai

 
 

9 tháng 9 2019

Đổi tên biểu thức thành M cho nó đỡ nhầm lẫn với cách phần đặt biến phụ nha!

Biểu thức đối xứng 2 biến x, y là em nghĩ đến cách đặt \(S=x+y;P=xy\Rightarrow S^2\ge4P\).(đẳng thức xảy ra khi x = y)

Có: \(M=\frac{S^2+P}{S\sqrt{P}}=\frac{S}{\sqrt{P}}+\frac{\sqrt{P}}{S}\). Đặt \(t=\frac{S}{\sqrt{P}}=\sqrt{\frac{S^2}{P}}\ge\sqrt{\frac{4P}{P}}=2\). Quy về tìm min biểu thức:

\(M=t+\frac{1}{t}\left(t\ge2\right)\). Đến đây có 2 cách:

+) Cách 1: \(t+\frac{1}{t}=\frac{t}{4}+\frac{1}{t}+\frac{3t}{4}\ge2\sqrt{\frac{t}{4}.\frac{1}{t}}+\frac{3.2}{4}=\frac{5}{2}\)

Đẳng thức xảy  ra khi ... (anh tự giải nhá:3)

+) Cách 2: \(t+\frac{1}{t}=t+\frac{4}{t}-\frac{3}{t}\ge2\sqrt{t.\frac{4}{t}}-\frac{3}{2}=\frac{5}{2}\)

Vậy...

2 tháng 7 2017

\(A=x^2+3xy+6x+5y^2+7y-2\)

\(=\left[x^2+2x\left(3+\dfrac{3}{2}y\right)+\left(3+\dfrac{3}{2}y\right)^2\right]+5y^2+7y-2-\left(3+\dfrac{3}{2}y\right)^2\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+5y^2+7y-2-9-9y-\dfrac{9}{4}y^2\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+\dfrac{11}{4}y^2-2y-11\)

\(=\left(x+3+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\left(y^2-\dfrac{8}{11}y+\dfrac{16}{121}\right)-\dfrac{125}{11}\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+\dfrac{11}{4}\left(x-\dfrac{4}{11}\right)^2-\dfrac{125}{11}\ge\dfrac{-125}{11}\)Vậy \(Min_A=\dfrac{-125}{11}\) khi \(\left[{}\begin{matrix}x+3+\dfrac{3}{2}y=0\\x-\dfrac{4}{11}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{74}{33}\\x=\dfrac{4}{11}\end{matrix}\right.\)

Biết số nhọ nhưng vẫn làm tiếp:)

2 tháng 7 2017

\(2,x^4+3x^2+2x+2=\left(x^4+2x^2+1\right)+\left(x^2+2x+1\right)=\left(x^2+1\right)^2+\left(x+1\right)^2>0\left(đpcm\right)\)

\(b,x^2+y^2+z^2+xy+yz+zx\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2+xy+yz+zx\right)\ge0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2xz+z^2\right)+\left(y^2+2yz+z^2\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2\ge0\)

Đúng với mọi x , y ,z

c,\(x^2+y^2+xy+x+y+1\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+xy+y+x+1\right)\ge0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2\ge0\)

Đúng với mọi x , y

19 tháng 12 2016

Có: \(\left(\frac{x+y}{x-y}\right)^2=\frac{x^2+y^2+2xy}{x^2+y^2-2xy}=\frac{3xy+2xy}{3xy-2xy}=5\)

Mà: \(x>y>0\Rightarrow x+y>0;x-y>0\)

\(\Rightarrow\frac{x+y}{x-y}>0\)

Do đó \(\frac{x+y}{x-y}=\sqrt{5}\)

8 tháng 3 2017

các bạn lên google xem xxx nhé

31 tháng 3 2018

Làm trên điện thoại sai sót thông cảm

Ta có \(x≥ 3y\) 

\(=> {x \over y}≥3\)  

Áp dụng cô-si cho hai số dương ta có

\({x^2+3y^2}≥{ 2 \sqrt{3}xy}\)   

Ta có \(M = {x^2+y^2 \over 3xy}\)    

\( = {3x^2+3y^2\over 9xy}\)   

\(= {x^2\over 9xy}+{{x^2+3y^2}\over 9xy}\) 

\( = {1 \over 9}.{x \over y}+{{x^2+3y^2}\over 9xy}\) 

\(≥ {1 \over 9}.{3}+{2 \sqrt{3} \over 9}\) 

\( = {3+2\sqrt{3} \over 9}\)  

Vậy Min M = (3+2✓3)/9

Dấu "=" xảy ra khi x=3y

31 tháng 3 2018

Thua olm rồi bạn ơi nhấn công thu ko đc :(

3 tháng 2 2021

Ta có x2 - 3xy + 2y2 = 0

<=> x2 - xy - 2xy + 2y2 = 0

<=> x(x - y) - 2y(x - y) = 0

<=> (x - y)(x - 2y) = 0

<=> \(\orbr{\begin{cases}x-y=0\\x-2y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases}}}\)

*) Khi x = y

Vì x > y > 0 => x \(\ne y\)(loại)

* Khi x = 2y

=> x - y = 2y - y

=> y > 0 (Vì x - y > 0) (tm)

Với x = 2y ta có A = \(\frac{6x+16y}{5x-3y}=\frac{6.2y+16.y}{5.2y-3y}=\frac{28y}{7y}=4\)

3 tháng 2 2021

Ta có : x2  +2y2 -3xy=0

<=> x2 - 2xy + y2 + y2 -xy =0

<=> (x - y)2 + y(y - x)         =0

<=> (y - x)2 + y(y - x)         =0

<=> (y - x)(y - x + y)           =0

<=> y=x (vô lí ) hoặc x= 2y (thỏa mãn)

Thay x=2y vào A ta đc

A=\(\frac{12y+16y}{10y-3y}=\frac{28y}{7y}\)

A= 4