Tìm nghiệm của đa thức :
H(x) = 3x^4 - 3x^2
Giải nhanh giúp ạ 💓 Mình camon !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: P(1)=2+1-1=2
P(1/4)=2*1/16+1/4-1=-5/8
b: P(1)=1^2-3*1+2=0
=>x=1 là nghiệm của P(x)
P(2)=2^2-3*2+2=0
=>x=2 là nghiệm của P(x)
\(M\left(x\right)=-3x^2+6x-4+2x^2-5x+4=-x^2+x\)
Đặt M(x)=0
=>-x(x-1)=0
=>x=0 hoặc x=1
\(M\left(x\right)=-x^2+x=-x\left(x-1\right)\)
Giả sử: \(M\left(x\right)=0\)
\(\Leftrightarrow-x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
ta có: H(x)=0 <=> \(3x^4-3x^2\)=0
=> \(3x^2x^2-3x^2\)=0
=> \(3x^2\left(x^2-1\right)=0\)
=> \(\orbr{\begin{cases}3x^2=0\Rightarrow x=0\\x^2-1=0\Rightarrow x=1\end{cases}}\)
vậy x=0, x=1 là nghiệm của đa thức H(x)
Ta có: Cho H(x) = 0
=> 3x4 - 3x2 = 0
=> 3x2.(x2 - 1) = 0
=> \(\orbr{\begin{cases}3x^2=0\\x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=0\\x^2=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậyx thuộc {0; 1; -1} là nghiệm của đa thức H(x)
a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9
⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2
b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7
A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1
c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0
d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0
⇒ H(x) vô nghiệm
Để tìm nghiệm của đa thức H(x) thì ta phải giải đã thức H(x) bằng 0
=> 3x^4 - 3x^2 = 0
=> x^2 ( 3x^2 - 3 ) = 0
=> x^2 = 0 hoặc 3x^2 - 3 = 0
=> x = 0 hoặc 3x^2 = 3
=> x = 0 hoặc x^2 = 1
=> x = 0 hoặc x = căn của 1
xét H(x)=0
ta được: 3x^4-3x^2=0
3x^2(x^2-1)=0
suy ra: 3x^2=0 hoặc x^2-1=0
3x^2=0 x^2-1=0
suy ra: x^2=0 x^2=1
x=0 x=căn bậc hai của 1